Machine Learning and Hamilton-Jacobi-Bellman Equation for Optimal Decumulation: a Comparison Study (2306.10582v1)
Abstract: We propose a novel data-driven neural network (NN) optimization framework for solving an optimal stochastic control problem under stochastic constraints. Customized activation functions for the output layers of the NN are applied, which permits training via standard unconstrained optimization. The optimal solution yields a multi-period asset allocation and decumulation strategy for a holder of a defined contribution (DC) pension plan. The objective function of the optimal control problem is based on expected wealth withdrawn (EW) and expected shortfall (ES) that directly targets left-tail risk. The stochastic bound constraints enforce a guaranteed minimum withdrawal each year. We demonstrate that the data-driven approach is capable of learning a near-optimal solution by benchmarking it against the numerical results from a Hamilton-Jacobi-BeLLMan (HJB) Partial Differential Equation (PDE) computational framework.