Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vision Guided MIMO Radar Beamforming for Enhanced Vital Signs Detection in Crowds (2306.10515v1)

Published 18 Jun 2023 in eess.SP and cs.CV

Abstract: Radar as a remote sensing technology has been used to analyze human activity for decades. Despite all the great features such as motion sensitivity, privacy preservation, penetrability, and more, radar has limited spatial degrees of freedom compared to optical sensors and thus makes it challenging to sense crowded environments without prior information. In this paper, we develop a novel dual-sensing system, in which a vision sensor is leveraged to guide digital beamforming in a multiple-input multiple-output (MIMO) radar. Also, we develop a calibration algorithm to align the two types of sensors and show that the calibrated dual system achieves about two centimeters precision in three-dimensional space within a field of view of $75\circ$ by $65\circ$ and for a range of two meters. Finally, we show that the proposed approach is capable of detecting the vital signs simultaneously for a group of closely spaced subjects, sitting and standing, in a cluttered environment, which highlights a promising direction for vital signs detection in realistic environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. C. Gu, “Short-range noncontact sensors for healthcare and other emerging applications: A review,” Sensors, vol. 16, no. 8, p. 1169, 2016.
  2. D. J. McDuff, J. R. Estepp, A. M. Piasecki, and E. B. Blackford, “A survey of remote optical photoplethysmographic imaging methods,” in 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC).   IEEE, 2015, pp. 6398–6404.
  3. E. Magdalena Nowara, T. K. Marks, H. Mansour, and A. Veeraraghavan, “Sparseppg: Towards driver monitoring using camera-based vital signs estimation in near-infrared,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2018, pp. 1272–1281.
  4. J. Kempfle and K. Van Laerhoven, “Respiration rate estimation with depth cameras: An evaluation of parameters,” in Proceedings of the 5th international Workshop on Sensor-based Activity Recognition and Interaction, 2018, pp. 1–10.
  5. Y. Rong, S. Srinivas, H. Chu, H. Yu, K. Liu, and D. W. Bliss, “Respiration and cardiac activity sensing using 3-d cameras,” in 2020 54th Asilomar Conference on Signals, Systems, and Computers.   IEEE, 2020, pp. 955–959.
  6. V. C. Chen, F. Li, S.-S. Ho, and H. Wechsler, “Micro-doppler effect in radar: phenomenon, model, and simulation study,” IEEE Transactions on Aerospace and electronic systems, vol. 42, no. 1, pp. 2–21, 2006.
  7. C. Li and J. Lin, “Random body movement cancellation in doppler radar vital sign detection,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3143–3152, 2008.
  8. Y. Rong and D. W. Bliss, “Harmonics-based multiple heartbeat detection at equal distance using uwb impulse radar,” in 2018 IEEE Radar Conference (RadarConf18).   IEEE, 2018, pp. 1101–1105.
  9. D. Bliss and K. Forsythe, “Multiple-input multiple-output (mimo) radar and imaging: degrees of freedom and resolution,” in The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 1.   IEEE, 2003, pp. 54–59.
  10. ——, “Mimo radar medical imaging: self-interference mitigation for breast tumor detection,” in 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.   IEEE, 2006, pp. 1558–1562.
  11. Y. Rong and D. W. Bliss, “Is radar cardiography (rcg) possible?” in 2019 IEEE Radar Conference (RadarConf).   IEEE, 2019, pp. 1–6.
  12. M. Nosrati, S. Shahsavari, S. Lee, H. Wang, and N. Tavassolian, “A concurrent dual-beam phased-array doppler radar using mimo beamforming techniques for short-range vital-signs monitoring,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 4, pp. 2390–2404, 2019.
  13. C. Feng, X. Jiang, M.-G. Jeong, H. Hong, C.-H. Fu, X. Yang, E. Wang, X. Zhu, and X. Liu, “Multitarget vital signs measurement with chest motion imaging based on mimo radar,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 11, pp. 4735–4747, 2021.
  14. A. Ahmad, J. C. Roh, D. Wang, and A. Dubey, “Vital signs monitoring of multiple people using a fmcw millimeter-wave sensor,” in 2018 IEEE Radar Conference (RadarConf18).   IEEE, 2018, pp. 1450–1455.
  15. Y. Rong, K. V. Mishra, and D. W. Bliss, “Radar-based radial arterial pulse rate and pulse pressure analysis,” in 2021 29th European Signal Processing Conference (EUSIPCO).   IEEE, 2021, pp. 1870–1874.
  16. Y. Rong, P. C. Theofanopoulos, G. C. Trichopoulos, and D. W. Bliss, “Cardiac sensing exploiting an ultra-wideband terahertz sensing system,” in 2020 IEEE International Radar Conference (RADAR).   IEEE, 2020, pp. 1002–1006.
  17. C. Gu, G. Wang, Y. Li, T. Inoue, and C. Li, “A hybrid radar-camera sensing system with phase compensation for random body movement cancellation in doppler vital sign detection,” IEEE transactions on microwave theory and techniques, vol. 61, no. 12, pp. 4678–4688, 2013.
  18. D.-M. Chian, C.-K. Wen, C.-J. Wang, M.-H. Hsu, and F.-K. Wang, “Vital signs identification system with doppler radars and thermal camera,” IEEE Transactions on Biomedical Circuits and Systems, vol. 16, no. 1, pp. 153–167, 2022.
  19. A. Shokouhmand, S. Eckstrom, B. Gholami, and N. Tavassolian, “Camera-augmented non-contact vital sign monitoring in real time,” IEEE Sensors Journal, 2022.
  20. Z. Xu, C. Shi, T. Zhang, S. Li, Y. Yuan, C.-T. M. Wu, Y. Chen, and A. Petropulu, “Simultaneous monitoring of multiple people’s vital sign leveraging a single phased-mimo radar,” IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2022.
  21. Y. Xiong, S. Li, C. Gu, G. Meng, and Z. Peng, “Millimeter-wave bat for mapping and quantifying micromotions in full field of view,” Research, vol. 2021, 2021.
  22. P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, “Machine recognition of human activities: A survey,” IEEE Transactions on Circuits and Systems for Video technology, vol. 18, no. 11, pp. 1473–1488, 2008.
  23. N. Sarafianos, B. Boteanu, B. Ionescu, and I. A. Kakadiaris, “3d human pose estimation: A review of the literature and analysis of covariates,” Computer Vision and Image Understanding, vol. 152, pp. 1–20, 2016.
  24. D. A. Noon, “Stepped-frequency radar design and signal processing enhances ground penetrating radar performance,” 1996.
  25. Y. Rong, I. Lenz, and D. W. Bliss, “Vital signs detection based on high-resolution 3-d mmwave radar imaging,” in 2022 IEEE International Symposium on Phased Array Systems & Technology (PAST).   IEEE, 2022, pp. 1–6.
  26. C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran et al., “Impixel 65nm bsi 320mhz demodulated tof image sensor with 3μ𝜇\muitalic_μm global shutter pixels and analog binning,” in 2018 IEEE International Solid-State Circuits Conference-(ISSCC).   IEEE, 2018, pp. 94–96.
  27. Google, Inc, “MediaPipe Pose,” Nov. 2022. [Online]. Available: https://google.github.io/mediapipe/solutions/pose.html
  28. Y. Rong and D. W. Bliss, “Smart homes: See multiple heartbeats through wall using wireless signals,” in 2019 IEEE Radar Conference (RadarConf).   IEEE, 2019, pp. 1–6.
  29. K. Han and S. Hong, “Detection and localization of multiple humans based on curve length of i/q signal trajectory using mimo fmcw radar,” IEEE Microwave and Wireless Components Letters, vol. 31, no. 4, pp. 413–416, 2021.
  30. M. Mercuri, P. Russo, M. Glassee, I. D. Castro, E. De Greef, M. Rykunov, M. Bauduin, A. Bourdoux, I. Ocket, F. Crupi et al., “Automatic radar-based 2-d localization exploiting vital signs signatures,” Scientific Reports, vol. 12, no. 1, pp. 1–11, 2022.
  31. J. Yan, G. Zhang, H. Hong, H. Chu, C. Li, and X. Zhu, “Phase-based human target 2-d identification with a mobile fmcw radar platform,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 12, pp. 5348–5359, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.