Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum scars and regular eigenstates in a chaotic spinor condensate (2306.10411v1)

Published 17 Jun 2023 in cond-mat.quant-gas

Abstract: Quantum many-body scars (QMBS) consist of a few low-entropy eigenstates in an otherwise chaotic many-body spectrum, and can weakly break ergodicity resulting in robust oscillatory dynamics. The notion of QMBS follows the original single-particle scars introduced within the context of quantum billiards, where scarring manifests in the form of a quantum eigenstate concentrating around an underlying classical unstable periodic orbit (UPO). A direct connection between these notions remains an outstanding problem. Here, we study a many-body spinor condensate that, owing to its collective interactions, is amenable to the diagnostics of scars. We characterize the system's rich dynamics, spectrum, and phase space, consisting of both regular and chaotic states. The former are low in entropy, violate the Eigenstate Thermalization Hypothesis (ETH), and can be traced back to integrable effective Hamiltonians, whereas most of the latter are scarred by the underlying semiclassical UPOs, while satisfying ETH. We outline an experimental proposal to probe our theory in trapped spin-1 Bose-Einstein condensates.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
  2. M. Srednicki, Phys. Rev. E 50, 888 (1994), arXiv:cond-mat/9403051 [cond-mat] .
  3. R. V. Jensen and R. Shankar, Phys. Rev. Lett. 54, 1879 (1985).
  4. M. Rigol, Phys. Rev. Lett. 103, 100403 (2009).
  5. R. Nandkishore and D. A. Huse, Annual Review of Condensed Matter Physics 6, 15 (2015).
  6. N. Shiraishi and T. Mori, Phys. Rev. Lett. 119, 030601 (2017).
  7. E. J. Heller, The Semiclassical Way to Dynamics and Spectroscopy (Princeton University Press, Princeton, 2018).
  8. J. Stein and H.-J. Stöckmann, Phys. Rev. Lett. 68, 2867 (1992).
  9. E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984).
  10. T. Mori, Phys. Rev. E 96, 012134 (2017).
  11. S. Sinha and S. Sinha, Phys. Rev. Lett. 125, 134101 (2020).
  12. M. Rautenberg and M. Gärttner, Phys. Rev. A 101, 053604 (2020).
  13. Y. Kawaguchi and M. Ueda, Phys. Rep. 520, 253 (2012).
  14. D. M. Stamper-Kurn and M. Ueda, Rev. Mod. Phys. 85, 1191 (2013).
  15. T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998).
  16. M. V. Berry, J. Phys. A: Math. and Gen. 10, 2083 (1977).
  17. V. Vedral, Central European Journal of Physics 1, 289 (2003).
  18. M. Srednicki, J. Phys. A: Math. and Gen. 29, L75 (1996).
  19. M. Srednicki, J. Phys. A: Math. and Gen. 32, 1163 (1999).
  20. R. Gati and M. K. Oberthaler, J. Phys. B: At. Mol. and Opt. Phys. 40, R61 (2007).
  21. P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge Nonlinear Science Series (Cambridge University Press, 1998).
  22. T. Parker and L. Chua, Practical Numerical Algorithms for Chaotic Systems (Springer New York, 2012).
Citations (14)

Summary

We haven't generated a summary for this paper yet.