Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DreamCatcher: Revealing the Language of the Brain with fMRI using GPT Embedding (2306.10082v1)

Published 16 Jun 2023 in cs.CV

Abstract: The human brain possesses remarkable abilities in visual processing, including image recognition and scene summarization. Efforts have been made to understand the cognitive capacities of the visual brain, but a comprehensive understanding of the underlying mechanisms still needs to be discovered. Advancements in brain decoding techniques have led to sophisticated approaches like fMRI-to-Image reconstruction, which has implications for cognitive neuroscience and medical imaging. However, challenges persist in fMRI-to-image reconstruction, such as incorporating global context and contextual information. In this article, we propose fMRI captioning, where captions are generated based on fMRI data to gain insight into the neural correlates of visual perception. This research presents DreamCatcher, a novel framework for fMRI captioning. DreamCatcher consists of the Representation Space Encoder (RSE) and the RevEmbedding Decoder, which transform fMRI vectors into a latent space and generate captions, respectively. We evaluated the framework through visualization, dataset training, and testing on subjects, demonstrating strong performance. fMRI-based captioning has diverse applications, including understanding neural mechanisms, Human-Computer Interaction, and enhancing learning and training processes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (3)

Summary

We haven't generated a summary for this paper yet.