2000 character limit reached
Shor's Algorithm Does Not Factor Large Integers in the Presence of Noise (2306.10072v1)
Published 15 Jun 2023 in quant-ph and cs.DM
Abstract: We consider Shor's quantum factoring algorithm in the setting of noisy quantum gates. Under a generic model of random noise for (controlled) rotation gates, we prove that the algorithm does not factor integers of the form $pq$ when the noise exceeds a vanishingly small level in terms of $n$ -- the number of bits of the integer to be factored, where $p$ and $q$ are from a well-defined set of primes of positive density. We further prove that with probability $1 - o(1)$ over random prime pairs $(p,q)$, Shor's factoring algorithm does not factor numbers of the form $pq$, with the same level of random noise present.
- Scott Aaronson. Quantum Computing Since Democritus. Cambridge University Press. 2013
- L. M. Adleman and D. R. Heath-Brown The first case of Fermat’s last theorem Inventiones mathematicae (1985). Volume: 79, pp. 409-416.
- Claudio Albanese and Stephan Lawi. Time Quantization and q𝑞qitalic_q-deformations. Journal of Physics A. 37 (8): 2983–2987.
- Eric Bach. Private communications.
- Piero Caldirola. The introduction of the chronon in the electron theory and a charged lepton mass formula. Lettere al Nuovo Cimento. 27 (8): 225–228.
- P. Erdös and A. Odlyzko. On the density of odd integers of the form (p−1)/2−n𝑝1superscript2𝑛(p-1)/2^{-n}( italic_p - 1 ) / 2 start_POSTSUPERSCRIPT - italic_n end_POSTSUPERSCRIPT and related questions. Journal of number theory, vol. 11 (1979) pp 257-263.
- Ruy A. H. Farias and Erasmo Recami. Introduction of a Quantum of Time (”chronon”), and its Consequences for Quantum Mechanics. arXiv:quant-ph/9706059
- Étienne Fouvry. Théorème de Brun-Titchmarsh; application au théorème der Fermat. Inventiones mathematicae (1985). Volume: 79, pp. 383-408
- A. G. Fowler and L. C. L. Hollenberg. Scalability of Shor’s algorithm with a limited set of rotation gates. Phys. Rev. A 70, 032329 (2004).
- Gil Kalai. https://gilkalai.wordpress.com/2022/05/26/waging-war-on-quantum/
- Gottesman, Daniel (2009). ”An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation”. arXiv:0904.2557
- Johan Håstad, A. W. Schrift and Adi Shamir. The Discrete Logarithm Modulo a Composite Hides O(n)𝑂𝑛O(n)italic_O ( italic_n ) Bits. J. Comput. Syst. Sci. 47(3): 376-404 (1993)
- Christopher Hooley. Applications of sieve methods to the theory of numbers, Cambridge University Press. 1976.
- Leonid Levin. https://www.cs.bu.edu/fac/lnd/expo/qc.htm
- Henry Margenau. The Nature of Physical Reality. McGraw-Hill. (1950).
- H. L. Montgomery and R. C. Vaughan. The large sieve. Mathematika 20: 119-134. 1973.
- H. L. Montgomery and R. C. Vaughan. Multiplicative Number Theory I: Classical Theory. Cambridge Studies in Advanced Mathematics, Series Number 97. Cambridge University Press 2006.
- A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook of applied cryptography. Boca Raton: CRC Press. 1997.
- Y. S. Nam and R. Blümel. Scaling laws for Shor’s algorithm with a banded quantum Fourier transform. PHYSICAL REVIEW A 87, 032333 (2013)
- Y. S. Nam and R. Blümel. Performance scaling of the quantum Fourier transform with defective rotation gates. July 2015. Quantum Information & Computation 15(9-10):721-736
- Michael Nielsen and Isaac Chuang. Quantum Computation and Quantum Information. Cambridge University Press. 2000 (first ed.) 2010 (second ed.)
- Athanasios Papoulis. Probability, Random Variables and Stochastic Processes (4th ed.). p. 148.
- Peter Shor. Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc. Press: 124–134. (1994).
- Peter Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing. Vol. 26, Iss. 5 (1997)10.1137/S0097539795293172
- Peter Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A. 52 (4): R2493–R2496. (1995)