Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling, identification and geometric control of autonomous quadcopters for agile maneuvering (2306.09651v1)

Published 16 Jun 2023 in cs.RO, cs.SY, and eess.SY

Abstract: This paper presents a multi-step procedure to construct the dynamic motion model of an autonomous quadcopter, identify the model parameters, and design a model-based nonlinear trajectory tracking controller. The aim of the proposed method is to speed up the commissioning of a new quadcopter design, i.e., to enable the drone to perform agile maneuvers with high precision in the shortest time possible. After a brief introduction to the theoretical background of the modelling and control design, the steps of the proposed method are presented using the example of a self-developed quadcopter platform. The performance of the method is tested and evaluated by real flight experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. L. M. Argentim, W. C. Rezende, P. E. Santos, and R. A. Aguiar, “PID, LQR and LQR-PID on a quadcopter platform,” in Proc. of the International Conference on Informatics, Electronics and Vision, pp. 1–6, 2013.
  2. T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadrotor UAV on SE(3),” in Proc. of the 49th IEEE Conference on Decision and Control, pp. 5420–5425, 2010.
  3. P. Antal, T. Péni, and R. Tóth, “Nonlinear control method for backflipping with miniature quadcopters,” IFAC-PapersOnLine, vol. 55, no. 14, pp. 133–138, 2022. 11th IFAC Symposium on Intelligent Autonomous Vehicles.
  4. P. Antal, T. Péni, and R. Tóth, “Backflipping with miniature quadcopters by Gaussian Process based control and planning.” arXiv: 2209.14652, 2022.
  5. R. Mahony, V. Kumar, and P. Corke, “Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor,” IEEE Robotics & Automation Magazine, vol. 19, no. 3, pp. 20–32, 2012.
  6. M. Bisheban, Geometric Control of a Quadrotor Unmanned Aerial Vehicle in Wind Fields. PhD thesis, George Washington University, 2019.
  7. D. Lee and S. Sastry, “Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter,” International Journal of Control, Automation and Systems, vol. 7, pp. 419–428, 06 2009.
  8. M. J. Van Nieuwstadt and R. M. Murray, “Real Time Trajectory Generation for Differentially Flat Systems,” International Journal of Robust and Nonlinear Control, vol. 8, no. 11, pp. 995–1020, 1998.
  9. D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadrotors,” in Proc. of the IEEE International Conference on Robotics and Automation, pp. 2520–2525, 2011.
  10. J. Förster, “System identification of the Crazyflie 2.0 nano quadrocopter,” Bachelor’s Thesis, ETH Zurich, Zurich, 2015.
  11. Z. Mustapa, S. Saat, S. H. Husin, and T. Zaid, “Quadcopter physical parameter identification and altitude system analysis,” in 2014 IEEE Symposium on Industrial Electronics and Applications (ISIEA), pp. 130–135, 2014.

Summary

We haven't generated a summary for this paper yet.