Cosmic birefringence tomography with polarized Sunyaev Zel'dovich effect (2306.08875v2)
Abstract: We consider the polarized Sunyaev-Zel'dovich (pSZ) effect for a tomographic probe of cosmic birefringence, including all relevant terms of the pSZ effect in the cosmic microwave background (CMB) observables, some of which were ignored in the previous works. The pSZ effect produces late-time polarization signals from the scattering of the local temperature quadrupole seen by an electron. We forecast the expected constraints on cosmic birefringence at the late time of the universe with the pSZ effect. We find that the birefringence angles at $2\lesssim z\lesssim 5$ are constrained at a subdegree level by the cross-correlations between CMB $E$- and $B$-modes or between CMB $B$-modes and remote quadrupole $E$-modes using data from LiteBIRD, CMB-S4, and LSST. In particular, the cross-correlation between large-scale CMB $B$-modes and remote-quadrupole $E$-modes has a much smaller bias from the Galactic foregrounds and is useful to cross-check the results from the $EB$ power spectrum.
- W.-T. Ni Prog. Theor. Phys. Suppl. 172 (2008) 49–60, arXiv:0712.4082.
- J. R. Eskilt Astron. Astrophys. 662 (2022) A10, arXiv:2201.13347.
- J. R. Eskilt et al. arXiv:2305.02268.
- S. M. Carroll Phys. Rev. Lett. 81 (1998) 3067–3070, astro-ph/9806099.
- I. Obata J. Cosmol. Astropart. Phys. 09 (2022) 062, arXiv:2108.02150.
- F. Finelli and M. Galaverni Phys. Rev. D 79 (2009) 063002, arXiv:0802.4210.
- G.-C. Liu and K.-W. Ng Phys. Dark Univ. 16 (2017) 22–25, arXiv:1612.02104.
- F. Takahashi and W. Yin J. Cosmol. Astropart. Phys. 04 (2021) 007, arXiv:2012.11576.
- R. C. Myers and M. Pospelov Phys. Rev. Lett. 90 (2003) 211601, hep-ph/0301124.
- J. Cornelison et al. Proc. SPIE Int. Soc. Opt. Eng. 12190 (2022) 121901X, arXiv:2207.14796.
- N. Stebor, P. Ade, Y. Akiba, C. Aleman, K. Arnold, C. Baccigalupi, B. Barch, D. Barron, S. Beckman, A. Bender, et al., “The Simons Array CMB polarization experiment”, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII (W. S. Holland and J. Zmuidzinas, eds.), vol. 9914 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 99141H, July, 2016.
- The Simons Observatory Collaboration J. Cosmol. Astropart. Phys. 02 (2019) 056, arXiv:1808.07445.
- LiteBIRD Collaboration Prog. Theor. Exp. Phys. (2, 2022) arXiv:2202.02773.
- G. Sigl and P. Trivedi (11, 2018) arXiv:1811.07873.
- B. D. Sherwin and T. Namikawa Mon. Not. R. Astron. Soc. 520 (2021) 3298–3304, arXiv:2108.09287.
- E. Komatsu et al. Astrophys. J. 192 (2011) 18, arXiv:1001.4538.
- Planck Collaboration Astron. Astrophys. 596 (2016) A13, arXiv:1605.08633.
- M. Kamionkowski and A. Loeb Phys. Rev. D 56 (1997) 4511–4513, astro-ph/9703118.
- J. Portsmouth Phys. Rev. D 70 (2004) 063504, astro-ph/0402173.
- N. Seto and E. Pierpaoli Phys. Rev. Lett. 95 (2005) 101302, astro-ph/0502564.
- E. Alizadeh and C. M. Hirata Phys. Rev. D 85 (2012) 123540, arXiv:1201.5374.
- The CMB-HD Collaboration (2022) arXiv:2203.05728.
- LSST Dark Energy Science Collaboration arXiv:1211.0310.
- A. R. Cooray and D. Baumann Phys. Rev. D 67 (2003) 063505, astro-ph/0211095.
- E. F. Bunn Phys. Rev. D 73 (2006) 123517, astro-ph/0603271.
- M. Zaldarriaga and U. Seljak Phys. Rev. D 55 (1997) 1830–1840, astro-ph/9609170.
- Planck Collaboration Astron. Astrophys. (2018) arXiv:1807.06209.
- O. H. E. Philcox and M. C. Johnson Phys. Rev. D 106 (2022) 083501, arXiv:2206.07054.
- S. M. Carroll and G. B. Field Phys. Rev. D 43 (Jun, 1991) 3789–3793.
- D. Harari and P. Sikivie Phys. Rev. B 289 (1992) 67–72.
- F. Naokawa and T. Namikawa Phys. Rev. D 108 (2023) 063525, arXiv:2305.13976.
- Particle Data Group Collaboration , R. L. Workman et al. Prog. Theor. Exp. Phys. 2022 (2022) 083C01.