Accurate and Efficient Waveform Model for Precessing Binary Black Holes (2306.08774v2)
Abstract: We present IMRPhenomXODE, a new phenomenological frequency-domain waveform approximant for gravitational wave (GW) signals from precessing binary black holes (BBHs) with generic spin configurations. We build upon the success of IMRPhenomXPHM [G. Pratten et al., Phys. Rev. D 103, 104056 (2021), which is one of the most widely adopted waveform approximants in GW data analyses that include spin precession, and introduce two additional significant improvements. First, we employ an efficient technique to numerically solve the (next-to)$4$-leading-order post-Newtonian precession equations, which allows us to accurately determine the evolution of the orientation of the orbital angular momentum $\boldsymbol{\hat{L}}{\rm N}$ even in cases with complicated precession dynamics, such as transitional precession. Second, we recalibrate the phase of GW modes in the frame coprecessing with $\boldsymbol{\hat{L}}{\rm N}$ against SEOBNRv4PHM [S. Ossokine et al., Phys. Rev. D 102, 044055 (2020)] to capture effects due to precession such as variations in the spin components aligned with $\boldsymbol{\hat{L}}_{\rm N}$. By incorporating these new features, IMRPhenomXODE achieves matches with SEOBNRv4PHM that are better than 99% for most BBHs with mass ratios $q \geq 1/6$ and with arbitrary spin configurations. In contrast, the mismatch between IMRPhenomXPHM and SEOBNRv4PHM often exceeds 10% for a BBH with $q\lesssim 1/2$ and large in-plane or antialigned spin components. Our implementation is also computationally efficient, with waveform evaluation times that can even be shorter than those of IMRPhenomXPHM for BBH signals with long durations and hence high frequency resolutions. The accuracy and efficiency of IMRPhenomXODE position it as a valuable tool for GW event searches, parameter estimation analyses, and the inference of underlying population properties.
- LIGO Scientific Collaboration, Advanced LIGO, Classical and Quantum Gravity 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
- LIGO Scientific Collaboration, Virgo Collaboration, and et al., GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Physical Review X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
- LIGO Scientific Collaboration, Virgo Collaboration, and et al., GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run, Physical Review X 11, 021053 (2021a), arXiv:2010.14527 [gr-qc] .
- LIGO Scientific Collaboration, Virgo Collaboration, and et al., GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, arXiv e-prints , arXiv:2108.01045 (2021b), arXiv:2108.01045 [gr-qc] .
- H. Tong, S. Galaudage, and E. Thrane, Population properties of spinning black holes using the gravitational-wave transient catalog 3, Phys. Rev. D 106, 103019 (2022).
- LIGO Scientific Collaboration, VIRGO Collaboration, and KAGRA Collaboration, Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3, Physical Review X 13, 011048 (2023), arXiv:2111.03634 [astro-ph.HE] .
- L. E. Kidder, C. M. Will, and A. G. Wiseman, Spin effects in the inspiral of coalescing compact binaries, Phys. Rev. D 47, R4183 (1993).
- C. Cutler and É. E. Flanagan, Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform\?, Phys. Rev. D 49, 2658 (1994), arXiv:gr-qc/9402014 [gr-qc] .
- E. Poisson and C. M. Will, Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian waveforms, Phys. Rev. D 52, 848 (1995), arXiv:gr-qc/9502040 [gr-qc] .
- A. Buonanno, Y. Chen, and M. Vallisneri, Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit, Phys. Rev. D 67, 104025 (2003), arXiv:gr-qc/0211087 [gr-qc] .
- P. Ajith, Addressing the spin question in gravitational-wave searches: Waveform templates for inspiralling compact binaries with nonprecessing spins, Phys. Rev. D 84, 084037 (2011), arXiv:1107.1267 [gr-qc] .
- M. Campanelli, C. O. Lousto, and Y. Zlochower, Spinning-black-hole binaries: The orbital hang-up, Phys. Rev. D 74, 041501 (2006).
- LIGO Scientific Collaboration, Virgo Collaboration, and et al., GW190412: Observation of a binary-black-hole coalescence with asymmetric masses, Phys. Rev. D 102, 043015 (2020a), arXiv:2004.08342 [astro-ph.HE] .
- LIGO Scientific Collaboration, Virgo Collaboration, and et al., GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT, Phys. Rev. Lett. 125, 101102 (2020b), arXiv:2009.01075 [gr-qc] .
- LIGO Scientific Collaboration, Virgo Collaboration, and et al., Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog, ApJ 913, L7 (2021d), arXiv:2010.14533 [astro-ph.HE] .
- S. Stevenson, C. P. L. Berry, and I. Mandel, Hierarchical analysis of gravitational-wave measurements of binary black hole spin-orbit misalignments, MNRAS 471, 2801 (2017), arXiv:1703.06873 [astro-ph.HE] .
- C. Talbot and E. Thrane, Determining the population properties of spinning black holes, Phys. Rev. D 96, 023012 (2017), arXiv:1704.08370 [astro-ph.HE] .
- M. Zaldarriaga, D. Kushnir, and J. A. Kollmeier, The expected spins of gravitational wave sources with isolated field binary progenitors, MNRAS 473, 4174 (2018), arXiv:1702.00885 [astro-ph.HE] .
- B. Liu and D. Lai, Black Hole and Neutron Star Binary Mergers in Triple Systems: Merger Fraction and Spin-Orbit Misalignment, ApJ 863, 68 (2018), arXiv:1805.03202 [astro-ph.HE] .
- I. Mandel and S. E. de Mink, Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries, MNRAS 458, 2634 (2016), arXiv:1601.00007 [astro-ph.HE] .
- J. Fuller and L. Ma, Most Black Holes Are Born Very Slowly Rotating, ApJ 881, L1 (2019), arXiv:1907.03714 [astro-ph.SR] .
- C. Chan, B. Müller, and A. Heger, The impact of fallback on the compact remnants and chemical yields of core-collapse supernovae, MNRAS 495, 3751 (2020), arXiv:2003.04320 [astro-ph.SR] .
- P. Jaranowski and A. Królak, Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case, Living Reviews in Relativity 15, 4 (2012).
- R. Cotesta, S. Marsat, and M. Pürrer, Frequency-domain reduced-order model of aligned-spin effective-one-body waveforms with higher-order modes, Phys. Rev. D 101, 124040 (2020), arXiv:2003.12079 [gr-qc] .
- S. Akcay, R. Gamba, and S. Bernuzzi, Hybrid post-Newtonian effective-one-body scheme for spin-precessing compact-binary waveforms up to merger, Phys. Rev. D 103, 024014 (2021), arXiv:2005.05338 [gr-qc] .
- P. Schmidt, M. Hannam, and S. Husa, Towards models of gravitational waveforms from generic binaries: A simple approximate mapping between precessing and nonprecessing inspiral signals, Phys. Rev. D 86, 104063 (2012), arXiv:1207.3088 [gr-qc] .
- M. Pürrer, Frequency-domain reduced order models for gravitational waves from aligned-spin compact binaries, Classical and Quantum Gravity 31, 195010 (2014), arXiv:1402.4146 [gr-qc] .
- M. Pürrer, Frequency domain reduced order model of aligned-spin effective-one-body waveforms with generic mass ratios and spins, Phys. Rev. D 93, 064041 (2016), arXiv:1512.02248 [gr-qc] .
- L. M. Thomas, G. Pratten, and P. Schmidt, Accelerating multimodal gravitational waveforms from precessing compact binaries with artificial neural networks, Phys. Rev. D 106, 104029 (2022), arXiv:2205.14066 [gr-qc] .
- N. J. Cornish, Fast Fisher Matrices and Lazy Likelihoods, arXiv e-prints , arXiv:1007.4820 (2010), arXiv:1007.4820 [gr-qc] .
- N. J. Cornish, Heterodyned likelihood for rapid gravitational wave parameter inference, Phys. Rev. D 104, 104054 (2021), arXiv:2109.02728 [gr-qc] .
- B. Zackay, L. Dai, and T. Venumadhav, Relative Binning and Fast Likelihood Evaluation for Gravitational Wave Parameter Estimation, arXiv e-prints , arXiv:1806.08792 (2018), arXiv:1806.08792 [astro-ph.IM] .
- LIGO Scientific Collaboration, LIGO Algorithm Library - LALSuite, free software (GPL) (2018).
- R. Sturani, Note on the derivation of the angular momentum and spin precessing equations in SpinTaylor codes, LIGO (2019), LIGO Document T1500554.
- K. Wette, SWIGLAL: Python and Octave interfaces to the LALSuite gravitational-wave data analysis libraries, SoftwareX 12, 100634 (2020).
- M. Boyle, R. Owen, and H. P. Pfeiffer, Geometric approach to the precession of compact binaries, Phys. Rev. D 84, 124011 (2011), arXiv:1110.2965 [gr-qc] .
- P. Schmidt, I. W. Harry, and H. P. Pfeiffer, Numerical Relativity Injection Infrastructure, LIGO (2016), LIGO Document T1500606.
- L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Reviews in Relativity 17, 2 (2014), arXiv:1310.1528 [gr-qc] .
- P. Schmidt, F. Ohme, and M. Hannam, Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter, Phys. Rev. D 91, 024043 (2015), arXiv:1408.1810 [gr-qc] .
- N. K. Johnson-McDaniel, S. Kulkarni, and A. Gupta, Inferring spin tilts at formation from gravitational wave observations of binary black holes: Interfacing precession-averaged and orbit-averaged spin evolution, Phys. Rev. D 106, 023001 (2022), arXiv:2107.11902 [astro-ph.HE] .
- J. Dormand and P. Prince, A family of embedded runge-kutta formulae, Journal of Computational and Applied Mathematics 6, 19 (1980).
- S. K. Lam, A. Pitrou, and S. Seibert, Numba: A LLVM-based Python JIT Compiler, in Proc. Second Workshop on the LLVM Compiler Infrastructure in HPC (2015) pp. 1–6.
- K. W. K. Wong, M. Isi, and T. D. P. Edwards, Fast gravitational wave parameter estimation without compromises, arXiv e-prints , arXiv:2302.05333 (2023), arXiv:2302.05333 [astro-ph.IM] .
- V. Cardoso, F. Duque, and G. Khanna, Gravitational tuning forks and hierarchical triple systems, arXiv e-prints , arXiv:2101.01186 (2021), arXiv:2101.01186 [gr-qc] .
- L. Lindblom, B. J. Owen, and D. A. Brown, Model waveform accuracy standards for gravitational wave data analysis, Phys. Rev. D 78, 124020 (2008), arXiv:0809.3844 [gr-qc] .
- M. Pürrer and C.-J. Haster, Gravitational waveform accuracy requirements for future ground-based detectors, Phys. Rev. Res. 2, 023151 (2020).
- LIGO Scientific Collaboration, Virgo Collaboration, and et al., Properties and Astrophysical Implications of the 150 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT Binary Black Hole Merger GW190521, ApJ 900, L13 (2020c), arXiv:2009.01190 [astro-ph.HE] .
- A. Klein, EFPE: Efficient fully precessing eccentric gravitational waveforms for binaries with long inspirals, arXiv e-prints , arXiv:2106.10291 (2021), arXiv:2106.10291 [gr-qc] .
- L. London and et al., (2023), in preparation.
- J. E. Thompson and et al., (2023), in preparation.
- S. Ghosh and et al., (2023), in preparation.
- E. Hamilton, L. London, and M. Hannam, Ringdown frequencies in black holes formed from precessing black-hole binaries, Phys. Rev. D 107, 104035 (2023b), arXiv:2301.06558 [gr-qc] .
- E. Poisson, Gravitational waves from inspiraling compact binaries: The quadrupole-moment term, Phys. Rev. D 57, 5287 (1998), arXiv:gr-qc/9709032 [gr-qc] .
- É. É. Flanagan and T. Hinderer, Constraining neutron-star tidal Love numbers with gravitational-wave detectors, Phys. Rev. D 77, 021502 (2008), arXiv:0709.1915 [astro-ph] .
- É. É. Flanagan and É. Racine, Gravitomagnetic resonant excitation of Rossby modes in coalescing neutron star binaries, Phys. Rev. D 75, 044001 (2007), arXiv:gr-qc/0601029 [gr-qc] .
- W. Xu and D. Lai, Resonant tidal excitation of oscillation modes in merging binary neutron stars: Inertial-gravity modes, Phys. Rev. D 96, 083005 (2017), arXiv:1708.01839 [astro-ph.HE] .
- E. Poisson, Gravitomagnetic tidal resonance in neutron-star binary inspirals, Phys. Rev. D 101, 104028 (2020), arXiv:2003.10427 [gr-qc] .
- S. Ma, H. Yu, and Y. Chen, Detecting resonant tidal excitations of Rossby modes in coalescing neutron-star binaries with third-generation gravitational-wave detectors, Phys. Rev. D 103, 063020 (2021), arXiv:2010.03066 [gr-qc] .
- P. K. Gupta, J. Steinhoff, and T. Hinderer, Relativistic effective action of dynamical gravitomagnetic tides for slowly rotating neutron stars, Physical Review Research 3, 013147 (2021), arXiv:2011.03508 [gr-qc] .