Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Networked Multi-Agent System for Mobile Wireless Infrastructure on Demand (2306.08737v2)

Published 14 Jun 2023 in cs.RO, cs.IT, math.IT, and math.OC

Abstract: Despite the prevalence of wireless connectivity in urban areas around the globe, there remain numerous and diverse situations where connectivity is insufficient or unavailable. To address this, we introduce mobile wireless infrastructure on demand, a system of UAVs that can be rapidly deployed to establish an ad-hoc wireless network. This network has the capability of reconfiguring itself dynamically to satisfy and maintain the required quality of communication. The system optimizes the positions of the UAVs and the routing of data flows throughout the network to achieve this quality of service (QoS). By these means, task agents using the network simply request a desired QoS, and the system adapts accordingly while allowing them to move freely. We have validated this system both in simulation and in real-world experiments. The results demonstrate that our system effectively offers mobile wireless infrastructure on demand, extending the operational range of task agents and supporting complex mobility patterns, all while ensuring connectivity and being resilient to agent failures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. D. Mox, M. Calvo-Fullana, M. Gerasimenko, J. Fink, V. Kumar, and A. Ribeiro, “Mobile wireless network infrastructure on demand,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 7726–7732.
  2. J. Fink, A. Ribeiro, and V. Kumar, “Robust control for mobility and wireless communication in cyber–physical systems with application to robot teams,” Proc. of the IEEE, vol. 100, no. 1, pp. 164–178, 2011.
  3. J. Stephan, J. Fink, V. Kumar, and A. Ribeiro, “Concurrent control of mobility and communication in multirobot systems,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1248–1254, 2017.
  4. D. Mox, V. Kumar, and A. Ribeiro, “Learning connectivity-maximizing network configurations,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5552–5559, 2022.
  5. A. Muralidharan and Y. Mostofi, “Communication-aware robotics: Exploiting motion for communication,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, pp. 115–139, 2021.
  6. D. P. Spanos and R. M. Murray, “Robust connectivity of networked vehicles,” in 2004 43rd IEEE Conference on Decision and Control (CDC), vol. 3.   IEEE, 2004, pp. 2893–2898.
  7. M. M. Zavlanos and G. J. Pappas, “Controlling connectivity of dynamic graphs,” in Proceedings of the 44th IEEE Conference on Decision and Control.   IEEE, 2005, pp. 6388–6393.
  8. M. C. De Gennaro and A. Jadbabaie, “Decentralized control of connectivity for multi-agent systems,” in Proceedings of the 45th IEEE Conference on Decision and Control.   IEEE, 2006, pp. 3628–3633.
  9. M. M. Zavlanos and G. J. Pappas, “Potential fields for maintaining connectivity of mobile networks,” IEEE Transactions on robotics, vol. 23, no. 4, pp. 812–816, 2007.
  10. E. Stump, A. Jadbabaie, and V. Kumar, “Connectivity management in mobile robot teams,” in 2008 IEEE international conference on robotics and automation.   IEEE, 2008, pp. 1525–1530.
  11. D. V. Dimarogonas and K. H. Johansson, “Decentralized connectivity maintenance in mobile networks with bounded inputs,” in 2008 IEEE International Conference on Robotics and Automation.   IEEE, 2008, pp. 1507–1512.
  12. P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa, and R. Sukthankar, “Decentralized estimation and control of graph connectivity for mobile sensor networks,” Automatica, vol. 46, no. 2, pp. 390–396, 2010.
  13. M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas, “Graph-theoretic connectivity control of mobile robot networks,” Proceedings of the IEEE, vol. 99, no. 9, pp. 1525–1540, 2011.
  14. M. Ji and M. Egerstedt, “Distributed coordination control of multiagent systems while preserving connectedness,” IEEE Transactions on Robotics, vol. 23, no. 4, pp. 693–703, 2007.
  15. M. M. Zavlanos and G. J. Pappas, “Distributed connectivity control of mobile networks,” IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1416–1428, 2008.
  16. D. P. Spanos and R. M. Murray, “Motion planning with wireless network constraints,” in Proceedings of the 2005, American Control Conference, 2005.   IEEE, 2005, pp. 87–92.
  17. K. Savla, G. Notarstefano, and F. Bullo, “Maintaining limited-range connectivity among second-order agents,” SIAM Journal on Control and Optimization, vol. 48, no. 1, pp. 187–205, 2009.
  18. Y. Kim and M. Mesbahi, “On maximizing the second smallest eigenvalue of a state-dependent graph laplacian,” in Proceedings of the 2005, American Control Conference, 2005.   IEEE, 2005, pp. 99–103.
  19. M. Schuresko and J. Cortés, “Distributed motion constraints for algebraic connectivity of robotic networks,” Journal of Intelligent and Robotic Systems, vol. 56, no. 1, pp. 99–126, 2009.
  20. M. M. Zavlanos, A. Ribeiro, and G. J. Pappas, “Network integrity in mobile robotic networks,” IEEE Transactions on Automatic Control, vol. 58, no. 1, pp. 3–18, 2012.
  21. O. Tekdas, W. Yang, and V. Isler, “Robotic routers: Algorithms and implementation,” The International Journal of Robotics Research, vol. 29, no. 1, pp. 110–126, 2010.
  22. Y. Mostofi, “Communication-aware motion planning in fading environments,” in 2008 IEEE International Conference on Robotics and Automation.   IEEE, 2008, pp. 3169–3174.
  23. Y. Mostofi, A. Gonzalez-Ruiz, A. Gaffarkhah, and D. Li, “Characterization and modeling of wireless channels for networked robotic and control systems-a comprehensive overview,” in 2009 IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems.   IEEE, 2009, pp. 4849–4854.
  24. Y. Yan and Y. Mostofi, “Robotic router formation in realistic communication environments,” IEEE Transactions on Robotics, vol. 28, no. 4, pp. 810–827, 2012.
  25. M. Calvo-Fullana, D. Mox, A. Pyattaev, J. Fink, V. Kumar, and A. Ribeiro, “Ros-netsim: A framework for the integration of robotic and network simulators,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1120–1127, 2021.
  26. M. Calvo-Fullana, A. Pyattaev, D. Mox, S. Andreev, and A. Ribeiro, “Communications and robotics simulation in uavs: A case study on aerial synthetic aperture antennas,” IEEE Communications Magazine, vol. 59, no. 1, pp. 22–27, 2021.
  27. J. Fink, A. Ribeiro, and V. Kumar, “Robust control of mobility and communications in autonomous robot teams,” IEEE Access, vol. 1, pp. 290–309, 2013.
  28. J. Fink, “Communication for teams of networked robots,” Ph.D. dissertation, University of Pennsylvania, 2011.
  29. “Robot Operating System (ROS),” https://www.ros.org/.
  30. “Gazebo Simulator,” http://gazebosim.org/.

Summary

We haven't generated a summary for this paper yet.