Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Data Augmentation for Seizure Prediction with Generative Diffusion Model (2306.08256v2)

Published 14 Jun 2023 in eess.SP and cs.LG

Abstract: Data augmentation (DA) can significantly strengthen the electroencephalogram (EEG)-based seizure prediction methods. However, existing DA approaches are just the linear transformations of original data and cannot explore the feature space to increase diversity effectively. Therefore, we propose a novel diffusion-based DA method called DiffEEG. DiffEEG can fully explore data distribution and generate samples with high diversity, offering extra information to classifiers. It involves two processes: the diffusion process and the denoised process. In the diffusion process, the model incrementally adds noise with different scales to EEG input and converts it into random noise. In this way, the representation of data can be learned. In the denoised process, the model utilizes learned knowledge to sample synthetic data from random noise input by gradually removing noise. The randomness of input noise and the precise representation enable the synthetic samples to possess diversity while ensuring the consistency of feature space. We compared DiffEEG with original, down-sampling, sliding windows and recombination methods, and integrated them into five representative classifiers. The experiments demonstrate the effectiveness and generality of our method. With the contribution of DiffEEG, the Multi-scale CNN achieves state-of-the-art performance, with an average sensitivity, FPR, AUC of 95.4%, 0.051/h, 0.932 on the CHB-MIT database and 93.6%, 0.121/h, 0.822 on the Kaggle database.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. R. S. Fisher, C. Acevedo, A. Arzimanoglou, A. Bogacz, J. H. Cross, C. E. Elger, J. Engel Jr, L. Forsgren, J. A. French, M. Glynn et al., “Ilae official report: a practical clinical definition of epilepsy,” Epilepsia, vol. 55, no. 4, pp. 475–482, 2014.
  2. B. Maimaiti, H. Meng, Y. Lv, J. Qiu, Z. Zhu, Y. Xie, Y. Li, W. Zhao, J. Liu, M. Li et al., “An overview of eeg-based machine learning methods in seizure prediction and opportunities for neurologists in this field,” Neuroscience, vol. 481, pp. 197–218, 2022.
  3. D. Jacobs, Y. H. Liu, T. Hilton, M. Del Campo, P. L. Carlen, and B. L. Bardakjian, “Classification of scalp eeg states prior to clinical seizure onset,” IEEE journal of translational engineering in health and medicine, vol. 7, pp. 1–3, 2019.
  4. L. Xiao, C. Li, Y. Wang, J. Chen, W. Si, C. Yao, X. Li, C. Duan, and P.-A. Heng, “Automatic localization of seizure onset zone from high-frequency seeg signals: A preliminary study,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 9, pp. 1–10, 2021.
  5. B. Direito, C. A. Teixeira, F. Sales, M. Castelo-Branco, and A. Dourado, “A realistic seizure prediction study based on multiclass svm,” International journal of neural systems, vol. 27, no. 03, p. 1750006, 2017.
  6. L. Kuhlmann, K. Lehnertz, M. P. Richardson, B. Schelter, and H. P. Zaveri, “Seizure prediction—ready for a new era,” Nature Reviews Neurology, vol. 14, no. 10, pp. 618–630, 2018.
  7. H. Daoud and M. A. Bayoumi, “Efficient epileptic seizure prediction based on deep learning,” IEEE transactions on biomedical circuits and systems, vol. 13, no. 5, pp. 804–813, 2019.
  8. L. D. Iasemidis, J. Chris Sackellares, H. P. Zaveri, and W. J. Williams, “Phase space topography and the lyapunov exponent of electrocorticograms in partial seizures,” Brain topography, vol. 2, pp. 187–201, 1990.
  9. M. Le Van Quyen, J. Martinerie, M. Baulac, and F. Varela, “Anticipating epileptic seizures in real time by a non-linear analysis of similarity between eeg recordings,” Neuroreport, vol. 10, no. 10, pp. 2149–2155, 1999.
  10. M. Bandarabadi, C. A. Teixeira, J. Rasekhi, and A. Dourado, “Epileptic seizure prediction using relative spectral power features,” Clinical Neurophysiology, vol. 126, no. 2, pp. 237–248, 2015.
  11. J. Birjandtalab, M. B. Pouyan, D. Cogan, M. Nourani, and J. Harvey, “Automated seizure detection using limited-channel eeg and non-linear dimension reduction,” Computers in biology and medicine, vol. 82, pp. 49–58, 2017.
  12. A. Subasi, J. Kevric, and M. Abdullah Canbaz, “Epileptic seizure detection using hybrid machine learning methods,” Neural Computing and Applications, vol. 31, pp. 317–325, 2019.
  13. X. Chen, C. Li, A. Liu, M. J. McKeown, R. Qian, and Z. J. Wang, “Toward open-world electroencephalogram decoding via deep learning: A comprehensive survey,” IEEE Signal Processing Magazine, vol. 39, no. 2, pp. 117–134, 2022.
  14. L. Chisci, A. Mavino, G. Perferi, M. Sciandrone, C. Anile, G. Colicchio, and F. Fuggetta, “Real-time epileptic seizure prediction using ar models and support vector machines,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 5, pp. 1124–1132, 2010.
  15. L. Kuhlmann, P. Karoly, D. R. Freestone, B. H. Brinkmann, A. Temko, A. Barachant, F. Li, G. Titericz Jr, B. W. Lang, D. Lavery et al., “Epilepsyecosystem. org: crowd-sourcing reproducible seizure prediction with long-term human intracranial eeg,” Brain, vol. 141, no. 9, pp. 2619–2630, 2018.
  16. D. Liang, A. Liu, Y. Gao, C. Li, R. Qian, and X. Chen, “Semi-supervised domain-adaptive seizure prediction via feature alignment and consistency regularization,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–12, 2023.
  17. A. R. Ozcan and S. Erturk, “Seizure prediction in scalp eeg using 3d convolutional neural networks with an image-based approach,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 11, pp. 2284–2293, 2019.
  18. B. Sun, J.-J. Lv, L.-G. Rui, Y.-X. Yang, Y.-G. Chen, C. Ma, and Z.-K. Gao, “Seizure prediction in scalp eeg based channel attention dual-input convolutional neural network,” Physica A: Statistical Mechanics and its Applications, vol. 584, p. 126376, 2021.
  19. C. Li, C. Shao, R. Song, G. Xu, X. Liu, R. Qian, and X. Chen, “Spatio-temporal mlp network for seizure prediction using eeg signals,” Measurement, vol. 206, p. 112278, 2023.
  20. Y. Gao, X. Chen, A. Liu, D. Liang, L. Wu, R. Qian, H. Xie, and Y. Zhang, “Pediatric seizure prediction in scalp eeg using a multi-scale neural network with dilated convolutions,” IEEE journal of translational engineering in health and medicine, vol. 10, pp. 1–9, 2022.
  21. Y. Gao, A. Liu, X. Cui, R. Qian, and X. Chen, “A general sample-weighted framework for epileptic seizure prediction,” Computers in Biology and Medicine, vol. 150, p. 106169, 2022.
  22. M. J. Cook, T. J. O’Brien, S. F. Berkovic, M. Murphy, A. Morokoff, G. Fabinyi, W. D’Souza, R. Yerra, J. Archer, L. Litewka et al., “Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study,” The Lancet Neurology, vol. 12, no. 6, pp. 563–571, 2013.
  23. M. Ihle, H. Feldwisch-Drentrup, C. A. Teixeira, A. Witon, B. Schelter, J. Timmer, and A. Schulze-Bonhage, “Epilepsiae–a european epilepsy database,” Computer methods and programs in biomedicine, vol. 106, no. 3, pp. 127–138, 2012.
  24. P. Branco, L. Torgo, and R. P. Ribeiro, “A survey of predictive modeling on imbalanced domains,” ACM computing surveys (CSUR), vol. 49, no. 2, pp. 1–50, 2016.
  25. H. Khan, L. Marcuse, M. Fields, K. Swann, and B. Yener, “Focal onset seizure prediction using convolutional networks,” IEEE Transactions on Biomedical Engineering, vol. 65, no. 9, pp. 2109–2118, 2017.
  26. J. Mathew, M. Luo, C. K. Pang, and H. L. Chan, “Kernel-based smote for svm classification of imbalanced datasets,” in IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society.   IEEE, 2015, pp. 001 127–001 132.
  27. Y. Cui, F. Zhou, Y. Lin, and S. Belongie, “Fine-grained categorization and dataset bootstrapping using deep metric learning with humans in the loop,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 1153–1162.
  28. N. D. Truong, A. D. Nguyen, L. Kuhlmann, M. R. Bonyadi, J. Yang, S. Ippolito, and O. Kavehei, “Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram,” Neural Networks, vol. 105, pp. 104–111, 2018.
  29. Y. Zhang, Y. Guo, P. Yang, W. Chen, and B. Lo, “Epilepsy seizure prediction on eeg using common spatial pattern and convolutional neural network,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 2, pp. 465–474, 2019.
  30. A. Antoniou, A. Storkey, and H. Edwards, “Data augmentation generative adversarial networks,” arXiv preprint arXiv:1711.04340, 2017.
  31. Y. Qi, L. Ding, Y. Wang, and G. Pan, “Learning robust features from nonstationary brain signals by multiscale domain adaptation networks for seizure prediction,” IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 3, pp. 1208–1216, 2021.
  32. K. Rasheed, J. Qadir, T. J. O’Brien, L. Kuhlmann, and A. Razi, “A generative model to synthesize eeg data for epileptic seizure prediction,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 2322–2332, 2021.
  33. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved techniques for training gans,” Advances in neural information processing systems, vol. 29, 2016.
  34. G. Giannone, D. Nielsen, and O. Winther, “Few-shot diffusion models,” arXiv preprint arXiv:2205.15463, 2022.
  35. Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Diffwave: A versatile diffusion model for audio synthesis,” arXiv preprint arXiv:2009.09761, 2020.
  36. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020.
  37. A. Kebaili, J. Lapuyade-Lahorgue, and S. Ruan, “Deep learning approaches for data augmentation in medical imaging: A review,” Journal of Imaging, vol. 9, no. 4, p. 81, 2023.
  38. W. H. Pinaya, P.-D. Tudosiu, J. Dafflon, P. F. Da Costa, V. Fernandez, P. Nachev, S. Ourselin, and M. J. Cardoso, “Brain imaging generation with latent diffusion models,” in Deep Generative Models: Second MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings.   Springer, 2022, pp. 117–126.
  39. H. Chung, E. S. Lee, and J. C. Ye, “Mr image denoising and super-resolution using regularized reverse diffusion,” IEEE Transactions on Medical Imaging, 2022.
  40. P. Chambon, C. Bluethgen, J.-B. Delbrouck, R. Van der Sluijs, M. Połacin, J. M. Z. Chaves, T. M. Abraham, S. Purohit, C. P. Langlotz, and A. Chaudhari, “Roentgen: Vision-language foundation model for chest x-ray generation,” arXiv preprint arXiv:2211.12737, 2022.
  41. P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794, 2021.
  42. A. H. Shoeb, “Application of machine learning to epileptic seizure onset detection and treatment,” Ph.D. dissertation, Massachusetts Institute of Technology, 2009.
  43. B. H. Brinkmann, J. Wagenaar, D. Abbot, P. Adkins, S. C. Bosshard, M. Chen, Q. M. Tieng, J. He, F. Muñoz-Almaraz, P. Botella-Rocamora et al., “Crowdsourcing reproducible seizure forecasting in human and canine epilepsy,” Brain, vol. 139, no. 6, pp. 1713–1722, 2016.
  44. H. Cao, C. Tan, Z. Gao, G. Chen, P.-A. Heng, and S. Z. Li, “A survey on generative diffusion model,” arXiv preprint arXiv:2209.02646, 2022.
  45. J. Hu, C.-s. Wang, M. Wu, Y.-x. Du, Y. He, and J. She, “Removal of eog and emg artifacts from eeg using combination of functional link neural network and adaptive neural fuzzy inference system,” Neurocomputing, vol. 151, pp. 278–287, 2015.
  46. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  47. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 10 012–10 022.
  48. J. Lee and K. Toutanova, “Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
  49. T. Maiwald, M. Winterhalder, R. Aschenbrenner-Scheibe, H. U. Voss, A. Schulze-Bonhage, and J. Timmer, “Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic,” Physica D: nonlinear phenomena, vol. 194, no. 3-4, pp. 357–368, 2004.
  50. X. Yang, J. Zhao, Q. Sun, J. Lu, and X. Ma, “An effective dual self-attention residual network for seizure prediction,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 1604–1613, 2021.
  51. C. Li, Y. Zhao, R. Song, X. Liu, R. Qian, and X. Chen, “Patient-specific seizure prediction from electroencephalogram signal via multi-channel feedback capsule network,” IEEE Transactions on Cognitive and Developmental Systems, 2022.
  52. Y. Zhao, C. Li, X. Liu, R. Qian, R. Song, and X. Chen, “Patient-specific seizure prediction via adder network and supervised contrastive learning,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 1536–1547, 2022.
  53. E. Lashgari, D. Liang, and U. Maoz, “Data augmentation for deep-learning-based electroencephalography,” Journal of Neuroscience Methods, vol. 346, p. 108885, 2020.
  54. B. Trabucco, K. Doherty, M. Gurinas, and R. Salakhutdinov, “Effective data augmentation with diffusion models,” arXiv preprint arXiv:2302.07944, 2023.
Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube