Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
36 tokens/sec
GPT-5 High Premium
34 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
148 tokens/sec
2000 character limit reached

Expanding Versatility of Agile Locomotion through Policy Transitions Using Latent State Representation (2306.08224v1)

Published 14 Jun 2023 in cs.RO and cs.LG

Abstract: This paper proposes the transition-net, a robust transition strategy that expands the versatility of robot locomotion in the real-world setting. To this end, we start by distributing the complexity of different gaits into dedicated locomotion policies applicable to real-world robots. Next, we expand the versatility of the robot by unifying the policies with robust transitions into a single coherent meta-controller by examining the latent state representations. Our approach enables the robot to iteratively expand its skill repertoire and robustly transition between any policy pair in a library. In our framework, adding new skills does not introduce any process that alters the previously learned skills. Moreover, training of a locomotion policy takes less than an hour with a single consumer GPU. Our approach is effective in the real-world and achieves a 19% higher average success rate for the most challenging transition pairs in our experiments compared to existing approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Z. Fu, A. Kumar, J. Malik, and D. Pathak, “Minimizing energy consumption leads to the emergence of gaits in legged robots,” Conference on Robot Learning (CoRL), 2021.
  2. A. Iscen, G. Yu, A. Escontrela, D. Jain, J. Tan, and K. Caluwaerts, “Learning agile locomotion skills with a mentor,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 2019–2025.
  3. X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic: Example-guided deep reinforcement learning of physics-based character skills,” ACM Trans. Graph., vol. 37, no. 4, Jul. 2018.
  4. J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain randomization for transferring deep neural networks from simulation to the real world,” in 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS).   IEEE, 2017, pp. 23–30.
  5. X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine, “Learning agile robotic locomotion skills by imitating animals,” in Robotics: Science and Systems, 07 2020.
  6. J. H. Soeseno, Y.-S. Luo, T. P.-C. Chen, and W.-C. Chen, “Transition motion tensor: A data-driven approach for versatile and controllable agents in physically simulated environments,” in SIGGRAPH Asia 2021 Technical Communications, 2021, pp. 1–4.
  7. Y.-S. Luo, J. H. Soeseno, T. P.-C. Chen, and W.-C. Chen, “Carl: Controllable agent with reinforcement learning for quadruped locomotion,” ACM Trans. Graph., vol. 39, no. 4, 2020.
  8. X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa, “Amp: Adversarial motion priors for stylized physics-based character control,” ACM Trans. Graph., vol. 40, no. 4, 2021.
  9. S. Starke, Y. Zhao, T. Komura, and K. Zaman, “Local motion phases for learning multi-contact character movements,” ACM Trans. Graph., vol. 39, no. 4, Jul. 2020.
  10. D. Holden, T. Komura, and J. Saito, “Phase-functioned neural networks for character control,” ACM Trans. Graph., vol. 36, no. 4, p. 42, 2017.
  11. H. Zhang, S. Starke, T. Komura, and J. Saito, “Mode-adaptive neural networks for quadruped motion control,” ACM Trans. Graph., vol. 37, no. 4, Jul. 2018.
  12. S. Starke, H. Zhang, T. Komura, and J. Saito, “Neural state machine for character-scene interactions,” ACM Trans. Graph., vol. 38, no. 6, Nov. 2019.
  13. R. M. Alexander, “The gaits of bipedal and quadrupedal animals,” The International Journal of Robotics Research, vol. 3, no. 2, pp. 49–59, 1984.
  14. D. F. Hoyt and C. R. Taylor, “Gait and the energetics of locomotion in horses,” Nature, vol. 292, no. 5820, pp. 239–240, 1981.
  15. G. C. Haynes and A. A. Rizzi, “Gaits and gait transitions for legged robots,” in Proceedings 2006 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2006, pp. 1117–1122.
  16. P.-B. Wieber, R. Tedrake, and S. Kuindersma, “Modeling and control of legged robots,” in Springer handbook of robotics.   Springer, 2016, pp. 1203–1234.
  17. Y. Fukuoka, Y. Habu, and T. Fukui, “Analysis of the gait generation principle by a simulated quadruped model with a cpg incorporating vestibular modulation,” Biological cybernetics, vol. 107, no. 6, pp. 695–710, 2013.
  18. A. J. Ijspeert, “Central pattern generators for locomotion control in animals and robots: a review,” Neural networks, vol. 21, no. 4, pp. 642–653, 2008.
  19. V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E. R. De Pieri, and D. G. Caldwell, “A reactive controller framework for quadrupedal locomotion on challenging terrain,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 2554–2561.
  20. F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli, “Real-time motion planning of legged robots: A model predictive control approach,” in 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids).   IEEE, 2017, pp. 577–584.
  21. J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic locomotion in the mit cheetah 3 through convex model-predictive control,” in 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS).   IEEE, 2018, pp. 1–9.
  22. Y. Ding, A. Pandala, and H.-W. Park, “Real-time model predictive control for versatile dynamic motions in quadrupedal robots,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 8484–8490.
  23. M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius, C. Gehring, M. Hutter, and J. Buchli, “Whole-body nonlinear model predictive control through contacts for quadrupeds,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1458–1465, 2018.
  24. G. C. Haynes, F. R. Cohen, and D. E. Koditschek, “Gait transitions for quasi-static hexapedal locomotion on level ground,” in Robotics Research.   Springer, 2011, pp. 105–121.
  25. S. Nansai, N. Rojas, M. R. Elara, R. Sosa, and M. Iwase, “A novel approach to gait synchronization and transition for reconfigurable walking platforms,” Digital Communications and Networks, vol. 1, no. 2, pp. 141–151, 2015.
  26. C. Boussema, M. J. Powell, G. Bledt, A. J. Ijspeert, P. M. Wensing, and S. Kim, “Online gait transitions and disturbance recovery for legged robots via the feasible impulse set,” IEEE Robotics and automation letters, vol. 4, no. 2, pp. 1611–1618, 2019.
  27. J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine, “How to train your robot with deep reinforcement learning: lessons we have learned,” The International Journal of Robotics Research, vol. 40, no. 4-5, pp. 698–721, 2021.
  28. T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning robust perceptive locomotion for quadrupedal robots in the wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.
  29. A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor adaptation for legged robots,” in Robotics: Science and Systems, 2021.
  30. Y. Hu, W. Wang, H. Jia, Y. Wang, Y. Chen, J. Hao, F. Wu, and C. Fan, “Learning to utilize shaping rewards: A new approach of reward shaping,” Advances in Neural Information Processing Systems, vol. 33, pp. 15 931–15 941, 2020.
  31. A. Iscen, K. Caluwaerts, J. Tan, T. Zhang, E. Coumans, V. Sindhwani, and V. Vanhoucke, “Policies modulating trajectory generators,” in Conference on Robot Learning.   PMLR, 2018, pp. 916–926.
  32. J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning quadrupedal locomotion over challenging terrain,” Science robotics, vol. 5, no. 47, p. eabc5986, 2020.
  33. L.-K. Ma, Z. Yang, X. Tong, B. Guo, and K. Yin, “Learning and exploring motor skills with spacetime bounds,” in Computer Graphics Forum, vol. 40, no. 2.   Wiley Online Library, 2021, pp. 251–263.
  34. J. Won, D. Gopinath, and J. Hodgins, “A scalable approach to control diverse behaviors for physically simulated characters,” ACM Trans. Graph., vol. 39, no. 4, pp. 33–1, 2020.
  35. A. Escontrela, X. B. Peng, W. Yu, T. Zhang, A. Iscen, K. Goldberg, and P. Abbeel, “Adversarial motion priors make good substitutes for complex reward functions,” arXiv preprint arXiv:2203.15103, 2022.
  36. X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer of robotic control with dynamics randomization,” in 2018 IEEE international conference on robotics and automation (ICRA).   IEEE, 2018, pp. 3803–3810.
  37. J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for quadruped robots,” Robotics: Science and Systems (RSS), 2018.
  38. X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and S. Levine, “Mcp: Learning composable hierarchical control with multiplicative compositional policies,” in NeurIPS, 2019.
  39. Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath, “Reinforcement learning for robust parameterized locomotion control of bipedal robots,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 2811–2817.
  40. J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of all common bipedal gaits via periodic reward composition,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 7309–7315.
  41. V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym: High performance gpu-based physics simulation for robot learning,” arXiv preprint arXiv:2108.10470, 2021.
  42. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International Conference on Learning Representations, 2019.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.