Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Emergent conformal boundaries from finite-entanglement scaling in matrix product states (2306.08163v2)

Published 13 Jun 2023 in cond-mat.str-el, cond-mat.stat-mech, hep-th, and quant-ph

Abstract: The use of finite entanglement scaling with matrix product states (MPS) has become a crucial tool for studying 1+1d critical lattice theories, especially those with emergent conformal symmetry. We argue that finite entanglement introduces a relevant deformation in the critical theory. As a result, the bipartite entanglement Hamiltonian defined from the MPS can be understood as a boundary conformal field theory with a physical and an entanglement boundary. We are able to exploit the symmetry properties of the MPS to engineer the physical conformal boundary condition. The entanglement boundary, on the other hand, is related to the concrete lattice model and remains invariant under this relevant perturbation. Using critical lattice models described by the Ising, Potts, and free compact boson CFTs, we illustrate the influence of the symmetry and the relevant deformation on the conformal boundaries in the entanglement spectrum.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com