2000 character limit reached
MultiCarroll dynamics (2306.07002v3)
Published 12 Jun 2023 in gr-qc, cond-mat.other, and hep-th
Abstract: Unlike a single Carroll particle, a multiparticle Carroll system can move under suitable conditions, as we demonstrate it explicitly for two particles with a momentum-dependent interaction: the center-of-mass remains fixed, however relative motion is possible, confirming previous statements made by Bergshoeff, Casalbuoni, and their collaborators. Analogous results are obtained for electric dipoles with the roles of the center-of-mass and the relative position interchanged.
- E. Bergshoeff, J. Gomis and G. Longhi, “Dynamics of Carroll Particles,” Class. Quant. Grav. 31 (2014) no.20, 205009 doi:10.1088/0264-9381/31/20/205009 [arXiv:1405.2264 [hep-th]]. See also the preliminary version J. Gomis and F. Passerini, “Super Carroll space, Carrollian super-particle and Carrollian super-string” 2005 (unpublished).
- J. M. Lévy-Leblond, “Une nouvelle limite non-relativiste du group de Poincaré,” Ann. Inst. H Poincaré 3 (1965) 1;
- V. D. Sen Gupta, “On an Analogue of the Galileo Group,” Il Nuovo Cimento 54 (1966) 512.
- C. Duval, G. W. Gibbons, P. A. Horvathy and P. M. Zhang, “Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time,” Class. Quant. Grav. 31 (2014) 085016 doi:10.1088/0264-9381/31/8/085016 [arXiv:1402.0657 [gr-qc]].
- L. Marsot, “Planar Carrollean dynamics, and the Carroll quantum equation,” J. Geom. Phys. 179 (2022), 104574 doi:10.1016/j.geomphys.2022.104574 [arXiv:2110.08489 [math-ph]].
- L. Marsot, P. M. Zhang, M. Chernodub and P. A. Horvathy, “Hall effects in Carroll dynamics,” [arXiv:2212.02360 [hep-th]].
- M. Pretko, “Subdimensional Particle Structure of Higher Rank U(1) Spin Liquids,” Phys. Rev. B 95 (2017) no.11, 115139 doi:10.1103/PhysRevB.95.115139 [arXiv:1604.05329 [cond-mat.str-el]].
- M. Pretko, “The Fracton Gauge Principle,” Phys. Rev. B 98 (2018) no.11, 115134 doi:10.1103/PhysRevB.98.115134 [arXiv:1807.11479 [cond-mat.str-el]].
- N. Seiberg, “Field Theories With a Vector Global Symmetry,” SciPost Phys. 8 (2020) no.4, 050 doi:10.21468/SciPostPhys.8.4.050 [arXiv:1909.10544 [cond-mat.str-el]].
- A. Gromov, “Towards classification of Fracton phases: the multipole algebra,” Phys. Rev. X 9 (2019) no.3, 031035 doi:10.1103/PhysRevX.9.031035 [arXiv:1812.05104 [cond-mat.str-el]]. M. Pretko, X. Chen and Y. You, “Fracton Phases of Matter,” Int. J. Mod. Phys. A 35 (2020) no.06, 2030003 doi:10.1142/S0217751X20300033 [arXiv:2001.01722 [cond-mat.str-el]].
- D. Doshi and A. Gromov, “Vortices and Fractons,” [arXiv:2005.03015 [cond-mat.str-el]].
- F. Peña-Benitez, “Fractons, Symmetric Gauge Fields and Geometry,” [arXiv:2107.13884 [cond-mat.str-el]].
- L. Bidussi, J. Hartong, E. Have, J. Musaeus and S. Prohazka, “Fractons, dipole symmetries and curved spacetime,” SciPost Phys. 12 (2022) no.6, 205 doi:10.21468/SciPostPhys.12.6.205 [arXiv:2111.03668 [hep-th]].
- A. Jain and K. Jensen, “Fractons in curved space,” SciPost Phys. 12 (2022) no.4, 142 doi:10.21468/SciPostPhys.12.4.142 [arXiv:2111.03973 [hep-th]].
- H. Bondi, M. G. van der Burg, and A. W. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A 269 (1962) 21; R. Sachs, “Asymptotic symmetries in gravitational theory,” Phys. Rev. 128 (1962) 2851.
- A. Bagchi, “Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories,” Phys. Rev. Lett. 105 (2010) 171601.
- C. Duval, G. W. Gibbons, P. A. Horvathy, “Conformal Carroll groups and BMS symmetry,” Class. Quant. Grav. 31 (2014) 092001 [arXiv:1402.5894 [gr-qc]].
- W. Kohn, “Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas,” Phys. Rev. 123 (1961), 1242-1244 doi:10.1103/PhysRev.123.1242
- P. M. Zhang and P. A. Horvathy, “Kohn’s theorem and Galilean symmetry,” Phys. Lett. B 702 (2011), 177-180 doi:10.1016/j.physletb.2011.06.081 [arXiv:1105.4401 [hep-th]].
- P. M. Zhang and P. A. Horvathy, “Kohn condition and exotic Newton-Hooke symmetry in the non-commutative Landau problem,” Phys. Lett. B 706 (2012), 442-446 doi:10.1016/j.physletb.2011.11.035 [arXiv:1111.1595 [hep-th]].
- P. M. Zhang, P. A. Horvathy, K. Andrzejewski, J. Gonera and P. Kosinski, “Newton-Hooke type symmetry of anisotropic oscillators,” Annals Phys. 333 (2013), 335-359 doi:10.1016/j.aop.2012.11.018 [arXiv:1207.2875 [hep-th]].
- C. Duval, G. W. Gibbons, P. A. Horvathy and P. M. Zhang, “Carroll symmetry of plane gravitational waves,” Class. Quant. Grav. 34 (2017) no.17, 175003 doi:10.1088/1361-6382/aa7f62 [arXiv:1702.08284 [gr-qc]].
- R. Casalbuoni, D. Dominici and J. Gomis, “Two interacting conformal Carroll particles,” [arXiv:2306.02614 [hep-th]].
Collections
Sign up for free to add this paper to one or more collections.