Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metrical properties of weighted products of consecutive Lüroth digits (2306.06886v1)

Published 12 Jun 2023 in math.NT

Abstract: The L\"uroth expansion of a real number $x\in (0,1]$ is the series [ x= \frac{1}{d_1} + \frac{1}{d_1(d_1-1)d_2} + \frac{1}{d_1(d_1-1)d_2(d_2-1)d_3} + \cdots, ] with $d_j\in\mathbb{N}{\geq 2}$ for all $j\in\mathbb{N}$. Given $m\in \mathbb{N}$, $\mathbf{t}=(t_0,\ldots, t{m-1})\in\mathbb{R}{>0}{m-1}$ and any function $\Psi:\mathbb{N}\to (1,\infty)$, define [ \mathcal{E}{\mathbf{t}}(\Psi)\colon= \left{ x\in (0,1]: d_n{t_0} \cdots d_{n+m}{t_{m-1}}\geq \Psi(n) \text{ for infinitely many} \ n \in\mathbb{N} \right}. ] We establish a Lebesgue measure dichotomy statement (a zero-one law) for $\mathcal{E}{\mathbf{t}}(\Psi)$ under a natural non-removable condition $\liminf{n\to\infty} \Psi(n)>~1$. Let $B$ be given by [ \log B \colon= \liminf_{n\to\infty} \frac{\log(\Psi(n))}{n}. ] For any $m\in\mathbb{N}$, we compute the Hausdorff dimension of $\mathcal{E}{\mathbf{t}}(\Psi)$ when either $B=1$ or $B=\infty$. We also compute the Hausdorff dimension of $\mathcal{E}{\mathbf{t}}(\Psi)$ when $1<B< \infty$ for $m=2$.

Summary

We haven't generated a summary for this paper yet.