Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CoTran: An LLM-based Code Translator using Reinforcement Learning with Feedback from Compiler and Symbolic Execution (2306.06755v4)

Published 11 Jun 2023 in cs.PL, cs.AI, and cs.SE

Abstract: In this paper, we present an LLM-based code translation method and an associated tool called CoTran, that translates whole-programs from one high-level programming language to another. Existing LLM-based code translation methods lack training to ensure that the translated code reliably compiles or bears substantial functional equivalence to the input code. In our work, we fine-tune an LLM using reinforcement learning, incorporating compiler feedback, and symbolic execution (symexec)-based testing feedback to assess functional equivalence between the input and output programs. The idea is to guide an LLM during fine-tuning, via compiler and symexec-based testing feedback, by letting it know how far it is from producing perfect translations. We conduct extensive experiments comparing CoTran with 14 other code translation tools, including human-written transpilers, LLM-based translation tools, and ChatGPT. Using a benchmark of over \num{57000} code pairs in Java and Python, we demonstrate that CoTran outperforms the other tools on relevant metrics such as compilation accuracy (CompAcc) and functional equivalence accuracy (FEqAcc). For example, in Python-to-Java translation, CoTran achieves 48.68% FEqAcc and 76.98% CompAcc, whereas the nearest competing tool (PLBART-base) gets 38.26% and 75.77% respectively. Additionally, CoTran, built on top of CodeT5, improves FEqAcc by +14.89% and CompAcc by +8.14% for Python-to-Java (resp., +12.94% and +4.30% for Java-to-Python).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Prithwish Jana (9 papers)
  2. Piyush Jha (11 papers)
  3. Haoyang Ju (1 paper)
  4. Gautham Kishore (2 papers)
  5. Aryan Mahajan (1 paper)
  6. Vijay Ganesh (62 papers)
Citations (6)