Moving beyond simulation: data-driven quantitative photoacoustic imaging using tissue-mimicking phantoms (2306.06748v1)
Abstract: Accurate measurement of optical absorption coefficients from photoacoustic imaging (PAI) data would enable direct mapping of molecular concentrations, providing vital clinical insight. The ill-posed nature of the problem of absorption coefficient recovery has prohibited PAI from achieving this goal in living systems due to the domain gap between simulation and experiment. To bridge this gap, we introduce a collection of experimentally well-characterised imaging phantoms and their digital twins. This first-of-a-kind phantom data set enables supervised training of a U-Net on experimental data for pixel-wise estimation of absorption coefficients. We show that training on simulated data results in artefacts and biases in the estimates, reinforcing the existence of a domain gap between simulation and experiment. Training on experimentally acquired data, however, yielded more accurate and robust estimates of optical absorption coefficients. We compare the results to fluence correction with a Monte Carlo model from reference optical properties of the materials, which yields a quantification error of approximately 20%. Application of the trained U-Nets to a blood flow phantom demonstrated spectral biases when training on simulated data, while application to a mouse model highlighted the ability of both learning-based approaches to recover the depth-dependent loss of signal intensity. We demonstrate that training on experimental phantoms can restore the correlation of signal amplitudes measured in depth. While the absolute quantification error remains high and further improvements are needed, our results highlight the promise of deep learning to advance quantitative PAI.
- S. Manohar and M. Dantuma, “Current and future trends in photoacoustic breast imaging,” Photoacoustics 16, p. 100134, 2019.
- X. L. Deán-Ben, A. Ozbek, and D. Razansky, “Volumetric real-time tracking of peripheral human vasculature with gpu-accelerated three-dimensional optoacoustic tomography,” IEEE transactions on medical imaging 32(11), pp. 2050–2055, 2013.
- S. Chuah, A. Attia, V. Long, C. Ho, P. Malempati, C. Fu, S. Ford, J. Lee, W. Tan, D. Razansky, et al., “Structural and functional 3d mapping of skin tumours with non-invasive multispectral optoacoustic tomography,” Skin Research and Technology 23(2), pp. 221–226, 2017.
- J. Aguirre, M. Schwarz, N. Garzorz, M. Omar, A. Buehler, K. Eyerich, and V. Ntziachristos, “Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy,” Nature Biomedical Engineering 1(5), pp. 1–8, 2017.
- F. Knieling, C. Neufert, A. Hartmann, J. Claussen, A. Urich, C. Egger, M. Vetter, S. Fischer, L. Pfeifer, A. Hagel, et al., “Multispectral optoacoustic tomography for assessment of crohn’s disease activity,” New England Journal of Medicine 376(13), pp. 1292–1294, 2017.
- M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Review of scientific instruments 77(4), p. 041101, 2006.
- P. Beard, “Biomedical photoacoustic imaging,” Interface focus 1(4), pp. 602–631, 2011.
- H. Jaffe and D. Berlincourt, “Piezoelectric transducer materials,” Proceedings of the IEEE 53(10), pp. 1372–1386, 1965.
- B. Cox, J. Laufer, and P. Beard, “The challenges for quantitative photoacoustic imaging,” in Photons Plus Ultrasound: Imaging and Sensing 2009, 7177, pp. 294–302, SPIE, 2009.
- B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” Journal of biomedical optics 17(6), p. 061202, 2012.
- B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Applied optics 45(8), pp. 1866–1875, 2006.
- T. Tarvainen, A. Pulkkinen, B. T. Cox, J. P. Kaipio, and S. R. Arridge, “Bayesian image reconstruction in quantitative photoacoustic tomography,” IEEE transactions on medical imaging 32(12), pp. 2287–2298, 2013.
- J. Buchmann, B. Kaplan, S. Powell, S. Prohaska, and J. Laufer, “Quantitative pa tomography of high resolution 3-d images: experimental validation in a tissue phantom,” Photoacoustics 17, p. 100157, 2020.
- A. Hauptmann, F. Lucka, M. Betcke, N. Huynh, J. Adler, B. Cox, P. Beard, S. Ourselin, and S. Arridge, “Model-based learning for accelerated, limited-view 3-d photoacoustic tomography,” IEEE transactions on medical imaging 37(6), pp. 1382–1393, 2018.
- S. Antholzer, M. Haltmeier, and J. Schwab, “Deep learning for photoacoustic tomography from sparse data,” Inverse problems in science and engineering 27(7), pp. 987–1005, 2019.
- C. Cai, K. Deng, C. Ma, and J. Luo, “End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging,” Optics letters 43(12), pp. 2752–2755, 2018.
- J. Gröhl, T. Kirchner, T. Adler, and L. Maier-Hein, “Confidence estimation for machine learning-based quantitative photoacoustics,” Journal of Imaging 4(12), p. 147, 2018.
- T. Chen, T. Lu, S. Song, S. Miao, F. Gao, and J. Li, “A deep learning method based on u-net for quantitative photoacoustic imaging,” in Photons Plus Ultrasound: Imaging and Sensing 2020, 11240, pp. 216–223, SPIE, 2020.
- J. Li, C. Wang, T. Chen, T. Lu, S. Li, B. Sun, F. Gao, and V. Ntziachristos, “Deep learning-based quantitative optoacoustic tomography of deep tissues in the absence of labeled experimental data,” Optica 9(1), pp. 32–41, 2022.
- J. Gröhl, M. Schellenberg, K. Dreher, and L. Maier-Hein, “Deep learning for biomedical photoacoustic imaging: A review,” Photoacoustics 22, p. 100241, 2021.
- M. Schellenberg, J. Gröhl, K. K. Dreher, J.-H. Nölke, N. Holzwarth, M. D. Tizabi, A. Seitel, and L. Maier-Hein, “Photoacoustic image synthesis with generative adversarial networks,” Photoacoustics 28, p. 100402, 2022.
- K. K. Dreher, L. Ayala, M. Schellenberg, M. Hübner, J.-H. Nölke, T. J. Adler, S. Seidlitz, J. Sellner, A. Studier-Fischer, J. Gröhl, et al., “Unsupervised domain transfer with conditional invertible neural networks,” arXiv preprint arXiv:2303.10191 , 2023.
- J. Gröhl, T. Kirchner, T. J. Adler, L. Hacker, N. Holzwarth, A. Hernández-Aguilera, M. A. Herrera, E. Santos, S. E. Bohndiek, and L. Maier-Hein, “Learned spectral decoloring enables photoacoustic oximetry,” Scientific reports 11(1), p. 6565, 2021.
- L. Hacker, J. Joseph, A. M. Ivory, M. O. Saed, B. Zeqiri, S. Rajagopal, and S. E. Bohndiek, “A copolymer-in-oil tissue-mimicking material with tuneable acoustic and optical characteristics for photoacoustic imaging phantoms,” IEEE Transactions on Medical Imaging 40(12), pp. 3593–3603, 2021.
- O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, pp. 234–241, Springer, 2015.
- L. Hacker, Validation of Photoacoustic Imaging Biomarkers in Cancer Biology. PhD thesis, 2022.
- J. W. Pickering, S. A. Prahl, N. Van Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. Van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Applied optics 32(4), pp. 399–410, 1993.
- S. A. Prahl, “Everything i think you should know about inverse adding-doubling,” Oregon Medical Laser Center, St. Vincent Hospital 1344, pp. 1–74, 2011.
- C. J. M. Jones and P. R. Munro, “Stability of gel wax based optical scattering phantoms,” Biomedical Optics Express 9(8), pp. 3495–3502, 2018.
- J. Joseph, M. R. Tomaszewski, I. Quiros-Gonzalez, J. Weber, J. Brunker, and S. E. Bohndiek, “Evaluation of precision in optoacoustic tomography for preclinical imaging in living subjects,” Journal of Nuclear Medicine 58(5), pp. 807–814, 2017.
- T. Else, “Patato: Photoacoustic tomography analysis toolkit.” https://github.com/tomelse/patato, 2023.
- I. Wolf, M. Vetter, I. Wegner, M. Nolden, T. Bottger, M. Hastenteufel, M. Schobinger, T. Kunert, and H.-P. Meinzer, “The medical imaging interaction toolkit (mitk): a toolkit facilitating the creation of interactive software by extending vtk and itk,” in Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display, 5367, pp. 16–27, SPIE, 2004.
- Q. Fang and D. A. Boas, “Monte carlo simulation of photon migration in 3d turbid media accelerated by graphics processing units,” Optics express 17(22), pp. 20178–20190, 2009.
- B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” Journal of biomedical optics 15(2), pp. 021314–021314, 2010.
- G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μ𝜇\muitalic_μm wavelength region,” Applied optics 12(3), pp. 555–563, 1973.
- J. Gröhl, K. K. Dreher, M. Schellenberg, T. Rix, N. Holzwarth, P. Vieten, L. Ayala, S. E. Bohndiek, A. Seitel, and L. Maier-Hein, “Simpa: an open-source toolkit for simulation and image processing for photonics and acoustics,” Journal of biomedical optics 27(8), p. 083010, 2022.
- M. Gehrung, S. E. Bohndiek, and J. Brunker, “Development of a blood oxygenation phantom for photoacoustic tomography combined with online po2 detection and flow spectrometry,” Journal of biomedical optics 24(12), p. 121908, 2019.
- A. Rodriguez-Molares, O. M. H. Rindal, J. D’hooge, S.-E. Måsøy, A. Austeng, M. A. L. Bell, and H. Torp, “The generalized contrast-to-noise ratio: A formal definition for lesion detectability,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 67(4), pp. 745–759, 2019.
- L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophysical Journal, vol. 93, p. 70-83 (1941). 93, pp. 70–83, 1941.
- S. L. Jacques, “Optical properties of biological tissues: a review,” Physics in Medicine & Biology 58(11), p. R37, 2013.
- A. M. Loeven, C. N. Receno, C. M. Cunningham, and L. R. DeRuisseau, “Arterial blood sampling in male cd-1 and c57bl/6j mice with 1% isoflurane is similar to awake mice,” Journal of Applied Physiology 125(6), pp. 1749–1759, 2018.
- E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innovative Food Science & Emerging Technologies 19, pp. 218–226, 2013.
- J. Beek, P. Blokland, P. Posthumus, M. Aalders, J. Pickering, H. Sterenborg, and M. Van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Physics in Medicine & Biology 42(11), p. 2255, 1997.
- A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, et al., “Performance assessment of photon migration instruments: the medphot protocol,” Applied optics 44(11), pp. 2104–2114, 2005.
- M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Physical Review E 71(1), p. 016706, 2005.