Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Multi-Dimensional Classification (2306.06517v2)

Published 10 Jun 2023 in cs.LG

Abstract: Multi-dimensional classification (MDC) can be employed in a range of applications where one needs to predict multiple class variables for each given instance. Many existing MDC methods suffer from at least one of inaccuracy, scalability, limited use to certain types of data, hardness of interpretation or lack of probabilistic (uncertainty) estimations. This paper is an attempt to address all these disadvantages simultaneously. We propose a formal framework for probabilistic MDC in which learning an optimal multi-dimensional classifier can be decomposed, without loss of generality, into learning a set of (smaller) single-variable multi-class probabilistic classifiers and a directed acyclic graph. Current and future developments of both probabilistic classification and graphical model learning can directly enhance our framework, which is flexible and provably optimal. A collection of experiments is conducted to highlight the usefulness of this MDC framework.

Summary

We haven't generated a summary for this paper yet.