Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

Spectrahedral Geometry of Graph Sparsifiers (2306.06204v1)

Published 9 Jun 2023 in cs.DM, math.CO, and math.OC

Abstract: We propose an approach to graph sparsification based on the idea of preserving the smallest $k$ eigenvalues and eigenvectors of the Graph Laplacian. This is motivated by the fact that small eigenvalues and their associated eigenvectors tend to be more informative of the global structure and geometry of the graph than larger eigenvalues and their eigenvectors. The set of all weighted subgraphs of a graph $G$ that have the same first $k$ eigenvalues (and eigenvectors) as $G$ is the intersection of a polyhedron with a cone of positive semidefinite matrices. We discuss the geometry of these sets and deduce the natural scale of $k$. Various families of graphs illustrate our construction.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.