Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

C(NN)FD -- a deep learning framework for turbomachinery CFD analysis (2306.05889v2)

Published 9 Jun 2023 in cs.LG, cs.CE, and physics.flu-dyn

Abstract: Deep Learning methods have seen a wide range of successful applications across different industries. Up until now, applications to physical simulations such as CFD (Computational Fluid Dynamics), have been limited to simple test-cases of minor industrial relevance. This paper demonstrates the development of a novel deep learning framework for real-time predictions of the impact of manufacturing and build variations on the overall performance of axial compressors in gas turbines, with a focus on tip clearance variations. The associated scatter in efficiency can significantly increase the CO2 emissions, thus being of great industrial and environmental relevance. The proposed C(NN)FD architecture achieves in real-time accuracy comparable to the CFD benchmark. Predicting the flow field and using it to calculate the corresponding overall performance renders the methodology generalisable, while filtering only relevant parts of the CFD solution makes the methodology scalable to industrial applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. J. Wang and X. Zheng, “Review of Geometric Uncertainty Quantification in Gas Turbines,” Journal of Engineering for Gas Turbines and Power, vol. 142, no. 7, 06 2020.
  2. J. A. Storer and N. A. Cumpsty, “Tip Leakage Flow in Axial Compressors,” Journal of Turbomachinery, vol. 113, no. 2, pp. 252–259, 04 1991.
  3. S. Sakulkaew, C. S. Tan, E. Donahoo, C. Cornelius, and M. Montgomery, “Compressor Efficiency Variation With Rotor Tip Gap From Vanishing to Large Clearance,” Journal of Turbomachinery, vol. 135, no. 3, 03 2013.
  4. G. Bruni, J. Taylor, S. Krishnababu, R. Miller, and R. Wells, “Squealer Tip Treatment Design for Axial Compressors,” ser. ASME Turbo Expo, vol. Volume 2A, 09 2020.
  5. C. Hah, “Flow Physics in a Large Rotor Tip Gap in a Multi-Stage Axial Compressor,” ser. ASME Turbo Expo, vol. Volume 2A, 06 2021.
  6. J. M. Maynard, A. P. S. Wheeler, J. V. Taylor, and R. Wells, “Unsteady Structure of Compressor Tip Leakage Flows,” Journal of Turbomachinery, vol. 145, no. 5, 11 2022.
  7. V. Suriyanarayanan, Q. Rendu, M. Vahdati, and L. Salles, “Effect of Manufacturing Tolerance in Flow Past a Compressor Blade,” Journal of Turbomachinery, vol. 144, no. 4, 11 2021.
  8. X. He, M. Rauseo, Q. Rendu, L. Salles, M. Vahdati, and F. Zhao, “Turbomachinery aerodynamic and aeroelastic predictions with machine learning,” ser. 16th International Symposium on Unsteady Aerodynamics Aeroacoustics and Aeroelasticity of Turbomachines, 2022.
  9. S. Krishnababu, O. Valero, and R. Wells, “AI Assisted High Fidelity Multi-Physics Digital Twin of Industrial Gas Turbines,” ser. ASME Turbo Expo, vol. Volume 2D, 06 2021.
  10. G. Bruni, S. Krishnababu, and S. Jackson, “Application of Machine Learning to Forced Response Predictions of an Industrial Axial Compressor Rotor Blade,” Journal of Engineering for Gas Turbines and Power, vol. 145, no. 1, 10 2022.
  11. J. Pongetti, T. Kipouros, M. Emmanuelli, R. Ahlfeld, and S. Shahpar, “Using Autoencoders and Output Consolidation to Improve Machine Learning Models for Turbomachinery Applications,” ser. ASME Turbo Expo, vol. Volume 2D, 06 2021.
  12. N. Thuerey, K. Weißenow, L. Prantl, and X. Hu, “Deep learning methods for reynolds-averaged navier-stokes simulations of airfoil flows,” AIAA Journal, vol. 58, no. 1, pp. 25–36, 2020.
  13. A. Kashefi, D. Rempe, and L. J. Guibas, “A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries,” Physics of Fluids, vol. 33, no. 2, 02 2021.
  14. K. Beqiraj, A. Perrone, M. Sanguineti, L. Ratto, and G. Ricci, “Rotor37 Aerodynamic Optimization: A Machine Learning Approach,” ser. ASME Turbo Expo, vol. Volume 10D, 06 2022.
  15. L. Harsch and S. Riedelbauch, “Direct prediction of steady-state flow fields in meshed domain with graph networks,” ser. International Conference on Learning Representations, 2021.
  16. T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia, “Learning mesh-based simulation with graph networks,” ser. International Conference on Learning Representations, 2021.
  17. J. Li, T. Liu, Y. Wang, and Y. Xie, “Integrated graph deep learning framework for flow field reconstruction and performance prediction of turbomachinery,” Energy, vol. 254, p. 124440, 2022.
  18. N. A. Cumpsty and J. H. Horlock, “Averaging Nonuniform Flow for a Purpose,” Journal of Turbomachinery, vol. 128, no. 1, pp. 120–129, 02 2005.
Citations (2)

Summary

We haven't generated a summary for this paper yet.