Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybridizable discontinuous Galerkin methods for the Monge-Ampere equation (2306.05296v1)

Published 8 Jun 2023 in math.NA and cs.NA

Abstract: We introduce two hybridizable discontinuous Galerkin (HDG) methods for numerically solving the Monge-Ampere equation. The first HDG method is devised to solve the nonlinear elliptic Monge-Ampere equation by using Newton's method. The second HDG method is devised to solve a sequence of the Poisson equation until convergence to a fixed-point solution of the Monge-Ampere equation is reached. Numerical examples are presented to demonstrate the convergence and accuracy of the HDG methods. Furthermore, the HDG methods are applied to r-adaptive mesh generation by redistributing a given scalar density function via the optimal transport theory. This r-adaptivity methodology leads to the Monge-Ampere equation with a nonlinear Neumann boundary condition arising from the optimal transport of the density function to conform the resulting high-order mesh to the boundary. Hence, we extend the HDG methods to treat the nonlinear Neumann boundary condition. Numerical experiments are presented to illustrate the generation of r-adaptive high-order meshes on planar and curved domains.

Citations (3)

Summary

We haven't generated a summary for this paper yet.