Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Embedding stochastic differential equations into neural networks via dual processes (2306.04847v2)

Published 8 Jun 2023 in cs.LG and physics.data-an

Abstract: We propose a new approach to constructing a neural network for predicting expectations of stochastic differential equations. The proposed method does not need data sets of inputs and outputs; instead, the information obtained from the time-evolution equations, i.e., the corresponding dual process, is directly compared with the weights in the neural network. As a demonstration, we construct neural networks for the Ornstein-Uhlenbeck process and the noisy van der Pol system. The remarkable feature of learned networks with the proposed method is the accuracy of inputs near the origin. Hence, it would be possible to avoid the overfitting problem because the learned network does not depend on training data sets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.