Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Last Week with ChatGPT: A Weibo Study on Social Perspective Regarding ChatGPT for Education and Beyond (2306.04325v5)

Published 7 Jun 2023 in cs.CY and cs.HC

Abstract: The application of AI-powered tools has piqued the interest of many fields, particularly in the academic community. This study uses ChatGPT, currently the most powerful and popular AI tool, as a representative example to analyze how the Chinese public perceives the potential of LLMs for educational and general purposes. Although facing accessibility challenges, we found that the number of discussions on ChatGPT per month is 16 times that of Ernie Bot developed by Baidu, the most popular alternative product to ChatGPT in the mainland, making ChatGPT a more suitable subject for our analysis. The study also serves as the first effort to investigate the changes in public opinion as AI technologies become more advanced and intelligent. The analysis reveals that, upon first encounters with advanced AI that was not yet highly capable, some social media users believed that AI advancements would benefit education and society, while others feared that advanced AI, like ChatGPT, would make humans feel inferior and lead to problems such as cheating and a decline in moral principles. The majority of users remained neutral. Interestingly, with the rapid development and improvement of AI capabilities, public attitudes have tended to shift in a positive direction. We present a thorough analysis of the trending shift and a roadmap to ensure the ethical application of ChatGPT-like models in education and beyond.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. L. Cui, S. Huang, F. Wei, C. Tan, C. Duan, and M. Zhou, “Superagent: A customer service chatbot for e-commerce websites,” in Proceedings of ACL 2017, system demonstrations, pp. 97–102, 2017.
  2. M. C. Han, “The impact of anthropomorphism on consumers’ purchase decision in chatbot commerce,” Journal of Internet Commerce, vol. 20, no. 1, pp. 46–65, 2021.
  3. S. Divya, V. Indumathi, S. Ishwarya, M. Priyasankari, and S. K. Devi, “A self-diagnosis medical chatbot using artificial intelligence,” Journal of Web Development and Web Designing, vol. 3, no. 1, pp. 1–7, 2018.
  4. G.-J. Hwang and C.-Y. Chang, “A review of opportunities and challenges of chatbots in education,” Interactive Learning Environments, pp. 1–14, 2021.
  5. OpenAI, “Introducing ChatGPT.” https://openai.com/blog/chatgpt, 2022.
  6. OpenAI, “GPT-4.” https://openai.com/research/gpt-4, 2023.
  7. OpenAI, “Gpt-4 technical report,” ArXiv, vol. abs/2303.08774, 2023.
  8. A. M. Turing, “Computing machinery and intelligence,” Mind, vol. LIX, pp. 433–460, 1950.
  9. Microsoft, “Introducing Microsoft 365 Copilot: Your Copilot for Work.” https://blogs.microsoft.com/blog/2023/03/16/introducing-microsoft-365-copilot-your-copilot-for-work/, 2023.
  10. R. H. Mogavi, C. Deng, J. J. Kim, P. Zhou, Y. D. Kwon, A. H. S. Metwally, A. Tlili, S. Bassanelli, A. Bucchiarone, S. Gujar, et al., “Exploring user perspectives on chatgpt: Applications, perceptions, and implications for ai-integrated education,” arXiv preprint arXiv:2305.13114, 2023.
  11. D. Baidoo-Anu and L. Owusu Ansah, “Education in the era of generative artificial intelligence (ai): Understanding the potential benefits of chatgpt in promoting teaching and learning,” Available at SSRN 4337484, 2023.
  12. E. Kasneci, K. Seßler, S. Küchemann, M. Bannert, D. Dementieva, F. Fischer, U. Gasser, G. Groh, S. Günnemann, E. Hüllermeier, et al., “Chatgpt for good? on opportunities and challenges of large language models for education,” Learning and Individual Differences, vol. 103, p. 102274, 2023.
  13. J. Rudolph, S. Tan, and S. Tan, “Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?,” Journal of Applied Learning and Teaching, vol. 6, no. 1, 2023.
  14. X. Zhai, “Chatgpt user experience: Implications for education,” Available at SSRN 4312418, 2022.
  15. A. Tlili, B. Shehata, M. A. Adarkwah, A. Bozkurt, D. T. Hickey, R. Huang, and B. Agyemang, “What if the devil is my guardian angel: Chatgpt as a case study of using chatbots in education,” Smart Learning Environments, vol. 10, no. 1, p. 15, 2023.
  16. T. H. Kung, M. Cheatham, A. Medenilla, C. Sillos, L. De Leon, C. Elepaño, M. Madriaga, R. Aggabao, G. Diaz-Candido, J. Maningo, et al., “Performance of chatgpt on usmle: Potential for ai-assisted medical education using large language models,” PLoS digital health, vol. 2, no. 2, p. e0000198, 2023.
  17. M. M. Rahman, H. J. Terano, M. N. Rahman, A. Salamzadeh, and M. S. Rahaman, “Chatgpt and academic research: A review and recommendations based on practical examples,” Rahman, M., Terano, HJR, Rahman, N., Salamzadeh, A., Rahaman, S.(2023). ChatGPT and Academic Research: A Review and Recommendations Based on Practical Examples. Journal of Education, Management and Development Studies, vol. 3, no. 1, pp. 1–12, 2023.
  18. A. Bahrini, M. Khamoshifar, H. Abbasimehr, R. J. Riggs, M. Esmaeili, R. M. Majdabadkohne, and M. Pasehvar, “Chatgpt: Applications, opportunities, and threats,” arXiv preprint arXiv:2304.09103, 2023.
  19. Y. Liu, T. Han, S. Ma, J. Zhang, Y. Yang, J. Tian, H. He, A. Li, M. He, Z. Liu, Z. Wu, D. Zhu, X. Li, N. Qiang, D. Shen, T. Liu, and B. Ge, “Summary of chatgpt/gpt-4 research and perspective towards the future of large language models,” 2023.
  20. M. Skjuve, A. Følstad, K. I. Fostervold, and P. B. Brandtzaeg, “A longitudinal study of human–chatbot relationships,” International Journal of Human-Computer Studies, vol. 168, p. 102903, 2022.
  21. A. Carpenter and K. Greene, “Social penetration theory,” The international encyclopedia of interpersonal communication, pp. 1–4, 2015.
  22. Y.-C. Lee, Y. Cui, J. Jamieson, W. Fu, and N. Yamashita, “Exploring effects of chatbot-based social contact on reducing mental illness stigma,” in Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–16, 2023.
  23. J. Chou, R. Ibars, and O. Murillo, “In pursuit of inclusive ai,” Microsoft Res. Microsoft, 2018.
  24. T. Avellan, S. Sharma, and M. Turunen, “Ai for all: defining the what, why, and how of inclusive ai,” in Proceedings of the 23rd International Conference on Academic Mindtrek, pp. 142–144, 2020.
  25. M. Kinnula, N. Iivari, S. Sharma, G. Eden, M. Turunen, K. Achuthan, P. Nedungadi, T. Avellan, B. Thankachan, and R. Tulaskar, “Researchers’ toolbox for the future: Understanding and designing accessible and inclusive artificial intelligence (aiai),” in Proceedings of the 24th International Academic Mindtrek Conference, pp. 1–4, 2021.
  26. T. Xiao, “weibosuperspider.” https://github.com/Python3Spiders/WeiboSuperSpider, 2019.
  27. B. Husky, “gpt_academic.” https://github.com/binary-husky/gpt_academic, 2023.
  28. Kaixindelele, “Chatpaper.” https://github.com/kaixindelele/ChatPaper, 2023.
  29. ShiwenNi, “Chatresponse.” https://huggingface.co/spaces/ShiwenNi/ChatResponse, 2023.
  30. F. Barbieri, L. E. Anke, and J. Camacho-Collados, “Xlm-t: Multilingual language models in twitter for sentiment analysis and beyond,” in Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 258–266, 2022.
  31. R. A. Fisher et al., “The design of experiments.,” The design of experiments., no. 7th Ed, 1960.
  32. D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.
  33. N. Carlini, D. Ippolito, M. Jagielski, K. Lee, F. Tramer, and C. Zhang, “Quantifying memorization across neural language models,” in The Eleventh International Conference on Learning Representations, 2023.
  34. S. Black, L. Gao, P. Wang, C. Leahy, and S. Biderman, “Gpt-neo: Large scale autoregressive language modeling with mesh-tensorflow,” URL: https://doi.org/10.5281/zenodo.5297715, 2021.
  35. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al., “Training language models to follow instructions with human feedback,” Advances in Neural Information Processing Systems, vol. 35, pp. 27730–27744, 2022.
  36. F. Fui-Hoon Nah, R. Zheng, J. Cai, K. Siau, and L. Chen, “Generative ai and chatgpt: Applications, challenges, and ai-human collaboration,” 2023.
  37. S. Qaiser, N. Yusoff, F. K. Ahmad, and R. Ali, “Sentiment analysis of impact of technology on employment from text on twitter,” International Journal of Interactive Mobile Technologies, 2020.
  38. F. Clarizia, F. Colace, M. De Santo, M. Lombardi, F. Pascale, and A. Pietrosanto, “E-learning and sentiment analysis: a case study,” in Proceedings of the 6th international conference on information and education technology, pp. 111–118, 2018.
  39. A. Hernández-Fernández, E. Mora, and M. I. V. Hernández, “When a new technological product launching fails: A multi-method approach of facial recognition and e-wom sentiment analysis,” Physiology & behavior, vol. 200, pp. 130–138, 2019.
  40. M. U. Haque, I. Dharmadasa, Z. T. Sworna, R. N. Rajapakse, and H. Ahmad, “”i think this is the most disruptive technology”: Exploring sentiments of chatgpt early adopters using twitter data,” 2022.
  41. S. Druga, S. T. Vu, E. Likhith, and T. Qiu, “Inclusive ai literacy for kids around the world,” in Proceedings of FabLearn 2019, pp. 104–111, 2019.
  42. A. Ovalle, P. Goyal, J. Dhamala, Z. Jaggers, K.-W. Chang, A. Galstyan, R. Zemel, and R. Gupta, “” i’m fully who i am”: Towards centering transgender and non-binary voices to measure biases in open language generation,” arXiv preprint arXiv:2305.09941, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yao Tian (23 papers)
  2. Chengwei Tong (2 papers)
  3. Lik-Hang Lee (47 papers)
  4. Reza Hadi Mogavi (19 papers)
  5. Yong Liao (38 papers)
  6. Pengyuan Zhou (46 papers)
Citations (5)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets