Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficiency and accuracy of GPU-parallelized Fourier spectral methods for solving phase-field models (2306.04322v2)

Published 7 Jun 2023 in cond-mat.mtrl-sci and physics.comp-ph

Abstract: Phase-field models are widely employed to simulate microstructure evolution during processes such as solidification or heat treatment. The resulting partial differential equations, often strongly coupled together, may be solved by a broad range of numerical methods, but this often results in a high computational cost, which calls for advanced numerical methods to accelerate their resolution. Here, we quantitatively test the efficiency and accuracy of semi-implicit Fourier spectral-based methods, implemented in Python programming language and parallelized on a graphics processing unit (GPU), for solving a phase-field model coupling Cahn-Hilliard and Allen-Cahn equations. We compare computational performance and accuracy with a standard explicit finite difference (FD) implementation with similar GPU parallelization on the same hardware. For a similar spatial discretization, the semi-implicit Fourier spectral (FS) solvers outperform the FD resolution as soon as the time step can be taken 5 to 6 times higher than afforded for the stability of the FD scheme. The accuracy of the FS methods also remains excellent even for coarse grids, while that of FD deteriorates significantly. Therefore, for an equivalent level of accuracy, semi-implicit FS methods severely outperform explicit FD, by up to 4 orders of magnitude, as they allow much coarser spatial and temporal discretization.

Summary

We haven't generated a summary for this paper yet.