Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GMMap: Memory-Efficient Continuous Occupancy Map Using Gaussian Mixture Model (2306.03740v3)

Published 6 Jun 2023 in cs.RO

Abstract: Energy consumption of memory accesses dominates the compute energy in energy-constrained robots which require a compact 3D map of the environment to achieve autonomy. Recent mapping frameworks only focused on reducing the map size while incurring significant memory usage during map construction due to multi-pass processing of each depth image. In this work, we present a memory-efficient continuous occupancy map, named GMMap, that accurately models the 3D environment using a Gaussian Mixture Model (GMM). Memory-efficient GMMap construction is enabled by the single-pass compression of depth images into local GMMs which are directly fused together into a globally-consistent map. By extending Gaussian Mixture Regression to model unexplored regions, occupancy probability is directly computed from Gaussians. Using a low-power ARM Cortex A57 CPU, GMMap can be constructed in real-time at up to 60 images per second. Compared with prior works, GMMap maintains high accuracy while reducing the map size by at least 56%, memory overhead by at least 88%, DRAM access by at least 78%, and energy consumption by at least 69%. Thus, GMMap enables real-time 3D mapping on energy-constrained robots.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Q. Tao, J. Wang, Z. Xu, T. X. Lin, Y. Yuan, and F. Zhang, “Swing-reducing flight control system for an underactuated indoor miniature autonomous blimp,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 4, pp. 1895–1904, 2021.
  2. Y. M. Chukewad, J. James, A. Singh, and S. Fuller, “Robofly: An insect-sized robot with simplified fabrication that is capable of flight, ground, and water surface locomotion,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 2025–2040, 2021.
  3. R. Wood, R. Nagpal, and G.-Y. Wei, “Flight of the robobees,” Scientific American, vol. 308, no. 3, pp. 60–65, 2013.
  4. S. H. Suhr, Y. S. Song, S. J. Lee, and M. Sitti, “Biologically inspired miniature water strider robot.” in Robotics: Science and Systems, vol. 2005, 2005, pp. 319–326.
  5. M. Keennon, K. Klingebiel, and H. Won, “Development of the nano hummingbird: A tailless flapping wing micro air vehicle,” in 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 2012, p. 588.
  6. M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 10–14.
  7. B. Yamauchi, “A frontier-based approach for autonomous exploration,” in IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1997, pp. 146–151.
  8. Z. Zhang, T. Henderson, S. Karaman, and V. Sze, “Fsmi: Fast computation of shannon mutual information for information-theoretic mapping,” The International Journal of Robotics Research, vol. 39, no. 9, pp. 1155–1177, 2020.
  9. T. Henderson, V. Sze, and S. Karaman, “An efficient and continuous approach to information-theoretic exploration,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 8566–8572.
  10. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The international journal of robotics research, vol. 30, no. 7, pp. 846–894, 2011.
  11. A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap: An efficient probabilistic 3d mapping framework based on octrees,” Autonomous robots, vol. 34, no. 3, pp. 189–206, 2013.
  12. J. P. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal, “3d normal distributions transform occupancy maps: An efficient representation for mapping in dynamic environments,” The International Journal of Robotics Research, vol. 32, no. 14, pp. 1627–1644, 2013.
  13. V. Guizilini and F. Ramos, “Towards real-time 3d continuous occupancy mapping using hilbert maps,” The International Journal of Robotics Research, vol. 37, no. 6, pp. 566–584, 2018.
  14. S. Srivastava and N. Michael, “Efficient, multifidelity perceptual representations via hierarchical gaussian mixture models,” IEEE Transactions on Robotics, vol. 35, no. 1, pp. 248–260, 2018.
  15. B. Eckart, K. Kim, A. Troccoli, A. Kelly, and J. Kautz, “Accelerated generative models for 3d point cloud data,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 5497–5505.
  16. C. O’Meadhra, W. Tabib, and N. Michael, “Variable resolution occupancy mapping using gaussian mixture models,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2015–2022, 2018.
  17. A. Dhawale and N. Michael, “Efficient parametric multi-fidelity surface mapping,” in Robotics: Science and Systems (RSS), vol. 2, no. 3, 2020, p. 5.
  18. K. Goel, N. Michael, and W. Tabib, “Probabilistic point cloud modeling via self-organizing gaussian mixture models,” IEEE Robotics and Automation Letters, vol. 8, no. 5, pp. 2526–2533, 2023.
  19. K. Doherty, T. Shan, J. Wang, and B. Englot, “Learning-aided 3-d occupancy mapping with bayesian generalized kernel inference,” IEEE Transactions on Robotics, pp. 1–14, 2019. [Online]. Available: https://doi.org/10.1109/tro.2019.2912487
  20. P. Z. X. Li, S. Karaman, and V. Sze, “Memory-efficient gaussian fitting for depth images in real time,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 8003–8009.
  21. A. Elfes, “Sonar-based real-world mapping and navigation,” IEEE Journal on Robotics and Automation, vol. 3, no. 3, pp. 249–265, 1987.
  22. N. Funk, J. Tarrio, S. Papatheodorou, M. Popović, P. F. Alcantarilla, and S. Leutenegger, “Multi-resolution 3d mapping with explicit free space representation for fast and accurate mobile robot motion planning,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3553–3560, 2021.
  23. D. Duberg and P. Jensfelt, “UFOMap: An efficient probabilistic 3D mapping framework that embraces the unknown,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6411–6418, 2020.
  24. S. T. O’Callaghan and F. T. Ramos, “Gaussian process occupancy maps,” The International Journal of Robotics Research, vol. 31, no. 1, pp. 42–62, 2012.
  25. J. Wang and B. Englot, “Fast, accurate gaussian process occupancy maps via test-data octrees and nested bayesian fusion,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), May 2016, pp. 1003–1010.
  26. W. Zhi, L. Ott, R. Senanayake, and F. Ramos, “Continuous occupancy map fusion with fast bayesian hilbert maps,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 4111–4117.
  27. Y. Gao and W. Dong, “An integrated hierarchical approach for real-time mapping with gaussian mixture model,” IEEE Robotics and Automation Letters, 2023.
  28. F. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy mapping with stochastic gradient descent,” The International Journal of Robotics Research, vol. 35, no. 14, pp. 1717–1730, 2016.
  29. A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Proceedings of the 1984 ACM SIGMOD international conference on Management of data, 1984, pp. 47–57.
  30. D. W. Scott and W. F. Szewczyk, “From kernels to mixtures,” Technometrics, vol. 43, no. 3, pp. 323–335, 2001.
  31. M. Kristan and A. Leonardis, “Multivariate online kernel density estimation,” in Computer Vision Winter Workshop, 2010, pp. 77–86.
  32. J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of rgb-d slam systems,” in Proc. of the International Conference on Intelligent Robot Systems (IROS), Oct. 2012.
  33. W. Wang, D. Zhu, X. Wang, Y. Hu, Y. Qiu, C. Wang, Y. Hu, A. Kapoor, and S. Scherer, “Tartanair: A dataset to push the limits of visual slam,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 4909–4916.
  34. “Jetson Download Center,” NVIDIA Developer, available: https://developer.nvidia.com/jetson-tx2-nx-system-module-data-sheet.
  35. Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D data processing,” arXiv:1801.09847, 2018.
  36. T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters, vol. 27, no. 8, pp. 861–874, 2006.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Peter Zhi Xuan Li (3 papers)
  2. Sertac Karaman (77 papers)
  3. Vivienne Sze (34 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com