Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence analysis of nonconform $H(\operatorname{div})$-finite elements for the damped time-harmonic Galbrun's equation (2306.03496v1)

Published 6 Jun 2023 in math.NA and cs.NA

Abstract: We consider the damped time-harmonic Galbrun's equation, which is used to model stellar oscillations. We introduce a discontinuous Galerkin finite element method (DGFEM) with $H(\operatorname{div})$-elements, which is nonconform with respect to the convection operator. We report a convergence analysis, which is based on the frameworks of discrete approximation schemes and T-compatibility. A novelty is that we show how to interprete a DGFEM as a discrete approximation scheme and this approach enables us to apply compact perturbation arguments in a DG-setting, and to circumvent any extra regularity assumptions on the solution. The advantage of the proposed $H(\operatorname{div})$-DGFEM compared to $H1$-conforming methods is that we do not require a minimal polynomial order or any special assumptions on the mesh structure. The considered DGFEM is constructed without a stabilization term, which considerably improves the assumption on the smallness of the Mach number compared to other DG methods and $H1$-conforming methods, and the obtained bound is fairly explicit. In addition, the method is robust with respect to the drastic changes of magnitude of the density and sound speed, which occur in stars. The convergence of the method is obtained without additional regularity assumptions on the solution, and for smooth solutions and parameters convergence rates are derived.

Summary

We haven't generated a summary for this paper yet.