Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 479 tok/s Pro
Kimi K2 242 tok/s Pro
2000 character limit reached

A unified analysis of likelihood-based estimators in the Plackett--Luce model (2306.02821v4)

Published 5 Jun 2023 in math.ST, stat.ME, and stat.TH

Abstract: The Plackett--Luce model has been extensively used for rank aggregation in social choice theory. A central statistical question in this model concerns estimating the utility vector that governs the model's likelihood. In this paper, we investigate the asymptotic theory of utility vector estimation by maximizing different types of likelihood, such as full, marginal, and quasi-likelihood. Starting from interpreting the estimating equations of these estimators to gain some initial insights, we analyze their asymptotic behavior as the number of compared objects increases. In particular, we establish both uniform consistency and asymptotic normality of these estimators and discuss the trade-off between statistical efficiency and computational complexity. For generality, our results are proven for deterministic graph sequences under appropriate graph topology conditions. These conditions are shown to be informative when applied to common sampling scenarios, such as nonuniform random hypergraph models and hypergraph stochastic block models. Numerical results are provided to support our findings.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube