Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 479 tok/s Pro
Kimi K2 242 tok/s Pro
2000 character limit reached

Human-like Few-Shot Learning via Bayesian Reasoning over Natural Language (2306.02797v3)

Published 5 Jun 2023 in cs.CL, cs.AI, and cs.LG

Abstract: A core tension in models of concept learning is that the model must carefully balance the tractability of inference against the expressivity of the hypothesis class. Humans, however, can efficiently learn a broad range of concepts. We introduce a model of inductive learning that seeks to be human-like in that sense. It implements a Bayesian reasoning process where a LLM first proposes candidate hypotheses expressed in natural language, which are then re-weighed by a prior and a likelihood. By estimating the prior from human data, we can predict human judgments on learning problems involving numbers and sets, spanning concepts that are generative, discriminative, propositional, and higher-order.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Github Logo Streamline Icon: https://streamlinehq.com