Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disproving XAI Myths with Formal Methods -- Initial Results (2306.01744v1)

Published 13 May 2023 in cs.AI and cs.LG

Abstract: The advances in Machine Learning (ML) in recent years have been both impressive and far-reaching. However, the deployment of ML models is still impaired by a lack of trust in how the best-performing ML models make predictions. The issue of lack of trust is even more acute in the uses of ML models in high-risk or safety-critical domains. eXplainable artificial intelligence (XAI) is at the core of ongoing efforts for delivering trustworthy AI. Unfortunately, XAI is riddled with critical misconceptions, that foster distrust instead of building trust. This paper details some of the most visible misconceptions in XAI, and shows how formal methods have been used, both to disprove those misconceptions, but also to devise practically effective alternatives.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Joao Marques-Silva (67 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.