Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Ray-Tracing Channel Emulation in Industrial Environments: An Analysis of Propagation Model Impact (2306.01408v1)

Published 2 Jun 2023 in eess.SP and cs.NI

Abstract: Industrial environments are considered to be severe from the point of view of electromagnetic (EM) wave propagation. When dealing with a wide range of industrial environments and deployment setups, ray-tracing channel emulation can capture many distinctive characteristics of a propagation scenario. Ray-tracing tools often require a detailed and accurate description of the propagation scenario. Consequently, industrial environments composed of complex objects can limit the effectiveness of a ray-tracing tool and lead to computationally intensive simulations. This study analyzes the impact of using different propagation models by evaluating the number of allowed ray path interactions and digital scenario representation for an industrial environment. This study is realized using the Volcano ray-tracing tool at frequencies relevant to 5G industrial networks: 2 GHz (mid-band) and 28 GHz (high-band). This analysis can help in enhancing a ray-tracing tool that relies on a digital representation of the propagation environment to produce deterministic channel models for Indoor Factory (InF) scenarios, which can subsequently be used for industrial network design.

Citations (7)

Summary

We haven't generated a summary for this paper yet.