Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generation of Probabilistic Synthetic Data for Serious Games: A Case Study on Cyberbullying (2306.01365v2)

Published 2 Jun 2023 in cs.CY

Abstract: Synthetic data generation has been a growing area of research in recent years. However, its potential applications in serious games have not been thoroughly explored. Advances in this field could anticipate data modelling and analysis, as well as speed up the development process. To try to fill this gap in the literature, we propose a simulator architecture for generating probabilistic synthetic data for serious games based on interactive narratives. This architecture is designed to be generic and modular so that it can be used by other researchers on similar problems. To simulate the interaction of synthetic players with questions, we use a cognitive testing model based on the Item Response Theory framework. We also show how probabilistic graphical models (in particular Bayesian networks) can be used to introduce expert knowledge and external data into the simulation. Finally, we apply the proposed architecture and methods in a use case of a serious game focused on cyberbullying. We perform Bayesian inference experiments using a hierarchical model to demonstrate the identifiability and robustness of the generated data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. UNICEF, “The State of the World’s Children 2017: Children in a Digital World,” tech. rep., UNICEF Division of Communication, 2017. ISBN: 978-92-806-4930-7.
  2. D. Smahel, H. Machackova, G. Mascheroni, L. Dedkova, E. Staksrud, K. Ólafsson, S. Livingstone, and U. Hasebrink, “EU Kids Online 2020: Survey results from 19 countries,” tech. rep., EU Kids Online, 2020. ISSN: 2045-256X.
  3. Publications Office of the European Union, 2021.
  4. G. López, N. Bueno, M. Castro, M. Reneses, J. Pérez, M. Riberas, M. Álvarez-Campana, M. Vega-Barbas, S. Solera-Cotanilla, L. Bastida, et al., “The H2020 project RAYUELA: A fun way to fight cybercrime,” Jornadas Nacionales de Investigación en Ciberseguridad - JNIC, 2021.
  5. C. C. Abt, Serious games. University press of America, 1987.
  6. A. Coutrot, E. Manley, S. Goodroe, C. Gahnstrom, G. Filomena, D. Yesiltepe, R. C. Dalton, J. M. Wiener, C. Hölscher, M. Hornberger, and H. J. Spiers, “Entropy of city street networks linked to future spatial navigation ability,” Nature, vol. 604, pp. 104–110, Mar. 2022.
  7. J. K. Hartshorne, J. B. Tenenbaum, and S. Pinker, “A critical period for second language acquisition: Evidence from 2/3 million english speakers,” Cognition, vol. 177, pp. 263–277, Aug. 2018.
  8. E. Awad, S. Dsouza, R. Kim, J. Schulz, J. Henrich, A. Shariff, J.-F. Bonnefon, and I. Rahwan, “The Moral Machine experiment,” Nature, vol. 563, pp. 59–64, Nov. 2018.
  9. B. Long, J. Simson, A. Buxó-Lugo, D. G. Watson, and S. A. Mehr, “How games can make behavioural science better,” Nature, vol. 613, pp. 433–436, Jan. 2023.
  10. J. Jordon, L. Szpruch, F. Houssiau, M. Bottarelli, G. Cherubin, C. Maple, S. N. Cohen, and A. Weller, “Synthetic data – what, why and how?,” 2022.
  11. S. Grund, O. Lüdtke, and A. Robitzsch, “Using synthetic data to improve the reproducibility of statistical results in psychological research.,” Psychological Methods, 2022.
  12. D. S. Quintana, “A synthetic dataset primer for the biobehavioural sciences to promote reproducibility and hypothesis generation,” eLife, vol. 9, Mar. 2020.
  13. B. Howe, J. Stoyanovich, H. Ping, B. Herman, and M. Gee, “Synthetic data for social good,” 2017.
  14. J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan kaufmann, 1988.
  15. S. E. Embretson and S. P. Reise, Item response theory. Psychology Press, 2013.
  16. B. Wang, T. Sun, and X. S. Zheng, “Beyond Winning and Losing: Modeling Human Motivations and Behaviors with Vector-Valued Inverse Reinforcement Learning,” Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 15, pp. 195–201, Oct. 2019.
  17. B. Lin, G. Cecchi, D. Bouneffouf, J. Reinen, and I. Rish, “A story of two streams: Reinforcement learning models from human behavior and neuropsychiatry,” arXiv preprint arXiv:1906.11286, 2019.
  18. S. E. Embretson and S. P. Reise, Item response theory for psychologists. Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers, 2000. Pages: xi, 371.
  19. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the em algorithm,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1–22, 1977.
  20. S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the bayesian restoration of images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, no. 6, pp. 721–741, 1984.
  21. R. Ostini and M. L. Nering, Polytomous item response theory models. No. 144, Sage, 2006.
  22. J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Probabilistic programming in python using PyMC3,” PeerJ Computer Science, vol. 2, p. e55, apr 2016.
  23. R. McElreath, Statistical rethinking: A Bayesian course with examples in R and Stan. Chapman and Hall/CRC, 2020.
  24. D. Makowski, M. Ben-Shachar, and D. Lüdecke, “bayestestR: Describing effects and their uncertainty, existence and significance within the bayesian framework,” Journal of Open Source Software, vol. 4, p. 1541, Aug. 2019.
  25. C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.
Citations (3)

Summary

We haven't generated a summary for this paper yet.