Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Probabilistic Relaxation of the Two-Stage Object Pose Estimation Paradigm (2306.00892v1)

Published 1 Jun 2023 in cs.RO and cs.CV

Abstract: Existing object pose estimation methods commonly require a one-to-one point matching step that forces them to be separated into two consecutive stages: visual correspondence detection (e.g., by matching feature descriptors as part of a perception front-end) followed by geometric alignment (e.g., by optimizing a robust estimation objective for pointcloud registration or perspective-n-point). Instead, we propose a matching-free probabilistic formulation with two main benefits: i) it enables unified and concurrent optimization of both visual correspondence and geometric alignment, and ii) it can represent different plausible modes of the entire distribution of likely poses. This in turn allows for a more graceful treatment of geometric perception scenarios where establishing one-to-one matches between points is conceptually ill-defined, such as textureless, symmetrical and/or occluded objects and scenes where the correct pose is uncertain or there are multiple equally valid solutions.

Summary

We haven't generated a summary for this paper yet.