Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy stable and maximum bound principle preserving schemes for the Allen-Cahn equation based on the Saul'yev methods (2305.19537v1)

Published 31 May 2023 in math.NA and cs.NA

Abstract: The energy dissipation law and maximum bound principle are significant characteristics of the Allen-Chan equation. To preserve discrete counterpart of these properties, the linear part of the target system is usually discretized implicitly, resulting in a large linear or nonlinear system of equations. The Fast Fourier Transform (FFT) algorithm is commonly used to solve the resulting linear or nonlinear systems with computational costs of $\mathcal{O}(Md log M)$ at each time step, where $M$ is the number of spatial grid points in each direction, and $d$ is the dimension of the problem. Combining the Saul'yev methods and the stabilized technique, we propose and analyze novel first- and second-order numerical schemes for the Allen-Cahn equation in this paper. In contrast to the traditional methods, the proposed methods can be solved by components, requiring only $\mathcal{O}(Md)$ computational costs per time step. Additionally, they preserve the maximum bound principle and original energy dissipation law at the discrete level. We also propose rigorous analysis of their consistency and convergence. Numerical experiments are conducted to confirm the theoretical analysis and demonstrate the efficiency of the proposed methods.

Summary

We haven't generated a summary for this paper yet.