Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MLOps: A Step Forward to Enterprise Machine Learning (2305.19298v1)

Published 27 May 2023 in cs.SE, cs.AI, cs.CV, and cs.LG

Abstract: Machine Learning Operations (MLOps) is becoming a highly crucial part of businesses looking to capitalize on the benefits of AI and ML models. This research presents a detailed review of MLOps, its benefits, difficulties, evolutions, and important underlying technologies such as MLOps frameworks, Docker, GitHub actions, and Kubernetes. The MLOps workflow, which includes model design, deployment, and operations, is explained in detail along with the various tools necessary for both model and data exploration and deployment. This article also puts light on the end-to-end production of ML projects using various maturity levels of automated pipelines, with the least at no automation at all and the highest with complete CI/CD and CT capabilities. Furthermore, a detailed example of an enterprise-level MLOps project for an object detection service is used to explain the workflow of the technology in a real-world scenario. For this purpose, a web application hosting a pre-trained model from TensorFlow 2 Model Zoo is packaged and deployed to the internet making sure that the system is scalable, reliable, and optimized for deployment at an enterprise level.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com