Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intent-aligned AI systems deplete human agency: the need for agency foundations research in AI safety (2305.19223v1)

Published 30 May 2023 in cs.AI, cs.CY, and cs.HC

Abstract: The rapid advancement of AI systems suggests that artificial general intelligence (AGI) systems may soon arrive. Many researchers are concerned that AIs and AGIs will harm humans via intentional misuse (AI-misuse) or through accidents (AI-accidents). In respect of AI-accidents, there is an increasing effort focused on developing algorithms and paradigms that ensure AI systems are aligned to what humans intend, e.g. AI systems that yield actions or recommendations that humans might judge as consistent with their intentions and goals. Here we argue that alignment to human intent is insufficient for safe AI systems and that preservation of long-term agency of humans may be a more robust standard, and one that needs to be separated explicitly and a priori during optimization. We argue that AI systems can reshape human intention and discuss the lack of biological and psychological mechanisms that protect humans from loss of agency. We provide the first formal definition of agency-preserving AI-human interactions which focuses on forward-looking agency evaluations and argue that AI systems - not humans - must be increasingly tasked with making these evaluations. We show how agency loss can occur in simple environments containing embedded agents that use temporal-difference learning to make action recommendations. Finally, we propose a new area of research called "agency foundations" and pose four initial topics designed to improve our understanding of agency in AI-human interactions: benevolent game theory, algorithmic foundations of human rights, mechanistic interpretability of agency representation in neural-networks and reinforcement learning from internal states.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Catalin Mitelut (2 papers)
  2. Ben Smith (17 papers)
  3. Peter Vamplew (24 papers)