Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DisCLIP: Open-Vocabulary Referring Expression Generation (2305.19108v1)

Published 30 May 2023 in cs.CV

Abstract: Referring Expressions Generation (REG) aims to produce textual descriptions that unambiguously identifies specific objects within a visual scene. Traditionally, this has been achieved through supervised learning methods, which perform well on specific data distributions but often struggle to generalize to new images and concepts. To address this issue, we present a novel approach for REG, named DisCLIP, short for discriminative CLIP. We build on CLIP, a large-scale visual-semantic model, to guide an LLM to generate a contextual description of a target concept in an image while avoiding other distracting concepts. Notably, this optimization happens at inference time and does not require additional training or tuning of learned parameters. We measure the quality of the generated text by evaluating the capability of a receiver model to accurately identify the described object within the scene. To achieve this, we use a frozen zero-shot comprehension module as a critique of our generated referring expressions. We evaluate DisCLIP on multiple referring expression benchmarks through human evaluation and show that it significantly outperforms previous methods on out-of-domain datasets. Our results highlight the potential of using pre-trained visual-semantic models for generating high-quality contextual descriptions.

Citations (6)

Summary

We haven't generated a summary for this paper yet.