Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy dependence of coherent photonuclear production of J/$ψ$ mesons in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$=5.02 TeV (2305.19060v2)

Published 30 May 2023 in nucl-ex and hep-ex

Abstract: The cross section for coherent photonuclear production of J/$\psi$ is presented as a function of the electromagnetic dissociation (EMD) of Pb. The measurement is performed with the ALICE detector in ultra-peripheral Pb-Pb collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. Cross sections are presented in five different J/$\psi$ rapidity ranges within $|y|<4$, with the J/$\psi$ reconstructed via its dilepton decay channels. In some events the J/$\psi$ is not accompanied by EMD, while other events do produce neutrons from EMD at beam rapidities either in one or the other beam direction, or in both. The cross sections in a given rapidity range and for different configurations of neutrons from EMD allow for the extraction of the energy dependence of this process in the range $17 < W_{\gamma\, \mathrm{Pb, n}} <920$ GeV, where $W_{\gamma\, \mathrm{Pb, n}}$ is the centre-of-mass energy per nucleon of the $\gamma\,\mathrm{Pb}$ system. This range corresponds to a Bjorken-$x$ interval spanning about three orders of magnitude: $ 1.1\times10{-5}<x<3.3\times 10{-2}$. In addition to the ultra-peripheral and photonuclear cross sections, the nuclear suppression factor is obtained. These measurements point to a strong depletion of the gluon distribution in Pb nuclei over a broad, previously unexplored, energy range. These results, together with previous ALICE measurements, provide unprecedented information to probe quantum chromodynamics at high energies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (91)
  1. H1, ZEUS Collaboration, H. Abramowicz et al., “Combination of measurements of inclusive deep inelastic e±⁢psuperscript𝑒plus-or-minus𝑝{e^{\pm}p}italic_e start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT italic_p scattering cross sections and QCD analysis of HERA data”, Eur. Phys. J. C 75 (2015) 580, arXiv:1506.06042 [hep-ex].
  2. A. Morreale and F. Salazar, “Mining for Gluon Saturation at Colliders”, Universe 7 (2021) 312, arXiv:2108.08254 [hep-ph].
  3. N. Armesto, “Nuclear shadowing”, J. Phys. G 32 (2006) R367–R394, arXiv:hep-ph/0604108.
  4. L. D. McLerran and R. Venugopalan, “Computing quark and gluon distribution functions for very large nuclei”, Phys. Rev. D 49 (1994) 2233–2241, arXiv:hep-ph/9309289.
  5. A. J. Baltz et al., “The Physics of Ultraperipheral Collisions at the LHC”, Phys. Rept. 458 (2008) 1–171, arXiv:0706.3356 [nucl-ex].
  6. J. G. Contreras and J. D. Tapia Takaki, “Ultra-peripheral heavy-ion collisions at the LHC”, Int. J. Mod. Phys. A30 (2015) 1542012.
  7. S. R. Klein and H. Mäntysaari, “Imaging the nucleus with high-energy photons”, Nature Rev. Phys. 1 (2019) 662–674, arXiv:1910.10858 [hep-ex].
  8. S. Klein and P. Steinberg, “Photonuclear and Two-photon Interactions at High-Energy Nuclear Colliders”, Ann. Rev. Nucl. Part. Sci. 70 (2020) 323–354, arXiv:2005.01872 [nucl-ex].
  9. ALICE Collaboration, B. Abelev et al., “Coherent J/ψJ𝜓\mathbf{\mathrm{J/}\psi}roman_J / italic_ψ photoproduction in ultra-peripheral Pb-Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\rm NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Lett. B 718 (2013) 1273–1283, arXiv:1209.3715 [nucl-ex].
  10. ALICE Collaboration, E. Abbas et al., “Charmonium and e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG=2.76 TeV”, Eur. Phys. J. C 73 (2013) 2617, arXiv:1305.1467 [nucl-ex].
  11. CMS Collaboration, V. Khachatryan et al., “Coherent J/ψJ𝜓\mathbf{\mathrm{J/}\psi}roman_J / italic_ψ photoproduction in ultra-peripheral PbPb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\rm NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV with the CMS experiment”, Phys. Lett. B 772 (2017) 489–511, arXiv:1605.06966 [nucl-ex].
  12. ALICE Collaboration, S. Acharya et al., “Coherent J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ and ψ′superscript𝜓′\psi^{\prime}italic_ψ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT photoproduction at midrapidity in ultra-peripheral Pb–Pb  collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Eur. Phys. J. C 81 (2021) 712, arXiv:2101.04577 [nucl-ex].
  13. ALICE Collaboration, S. Acharya et al., “First measurement of the |t|𝑡|t|| italic_t |-dependence of coherent J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ photonuclear production”, Phys. Lett. B 817 (2021) 136280, arXiv:2101.04623 [nucl-ex].
  14. ALICE Collaboration, S. Acharya et al., “Coherent J/ψ𝜓\psiitalic_ψ photoproduction at forward rapidity in ultra-peripheral Pb-Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\rm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Lett. B 798 (2019) 134926, arXiv:1904.06272 [nucl-ex].
  15. LHCb Collaboration, R. Aaij et al., “Study of coherent J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ production in lead-lead collisions at sNNsubscriptsNN\sqrt{{\mathrm{s}}_{\mathrm{NN}}}square-root start_ARG roman_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5 TeV”, JHEP 07 (2022) 117, arXiv:2107.03223 [hep-ex].
  16. S. R. Klein and J. Nystrand, “Exclusive vector meson production in relativistic heavy ion collisions”, Phys. Rev. C60 (1999) 014903, arXiv:hep-ph/9902259 [hep-ph].
  17. V. Guzey, E. Kryshen, M. Strikman, and M. Zhalov, “Evidence for nuclear gluon shadowing from the ALICE measurements of PbPb ultraperipheral exclusive J/ψ𝐽𝜓J/{\psi}italic_J / italic_ψ production”, Phys. Lett. B 726 (2013) 290–295, arXiv:1305.1724 [hep-ph].
  18. J. G. Contreras, “Gluon shadowing at small x𝑥xitalic_x from coherent J/ψJ𝜓\mathrm{J/}\psiroman_J / italic_ψ photoproduction data at energies available at the CERN Large Hadron Collider”, Phys. Rev. C 96 (2017) 015203, arXiv:1610.03350 [nucl-ex].
  19. ALICE Collaboration, J. Adam et al., “Measurement of an excess in the yield of J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ at very low pTsubscript𝑝Tp_{\rm T}italic_p start_POSTSUBSCRIPT roman_T end_POSTSUBSCRIPT in Pb-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. Lett. 116 (2016) 222301, arXiv:1509.08802 [nucl-ex].
  20. STAR Collaboration, J. Adam et al., “Observation of excess J/ψ𝜓\psiitalic_ψ yield at very low transverse momenta in Au+Au collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\rm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200 GeV and U+U collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\rm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 193 GeV”, Phys. Rev. Lett. 123 (2019) 132302, arXiv:1904.11658 [hep-ex].
  21. ALICE Collaboration, “Photoproduction of low-pTsubscript𝑝Tp_{\rm T}italic_p start_POSTSUBSCRIPT roman_T end_POSTSUBSCRIPT J/ψ𝜓\psiitalic_ψ from peripheral to central Pb−--Pb collisions at 5.02 TeV”, Phys. Lett. B 846 (2023) 137467, arXiv:2204.10684 [nucl-ex].
  22. LHCb Collaboration, R. Aaij et al., “J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ photoproduction in Pb-Pb peripheral collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG= 5 TeV”, Phys. Rev. C 105 (2022) L032201, arXiv:2108.02681 [hep-ex].
  23. A. J. Baltz, S. R. Klein, and J. Nystrand, “Coherent vector meson photoproduction with nuclear breakup in relativistic heavy ion collisions”, Phys. Rev. Lett. 89 (2002) 012301, arXiv:nucl-th/0205031.
  24. V. Guzey, M. Strikman, and M. Zhalov, “Disentangling coherent and incoherent quasielastic J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ photoproduction on nuclei by neutron tagging in ultraperipheral ion collisions at the LHC”, Eur. Phys. J. C 74 (2014) 2942, arXiv:1312.6486 [hep-ph].
  25. I. A. Pshenichnov, “Electromagnetic excitation and fragmentation of ultrarelativistic nuclei”, Phys. Part. Nucl. 42 (2011) 215–250.
  26. ALICE Collaboration, J. Adam et al., “Coherent ρ𝜌\rhoitalic_ρ00{}^{0}start_FLOATSUPERSCRIPT 0 end_FLOATSUPERSCRIPT photoproduction in ultra-peripheral Pb-Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\mathrm{NN}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, JHEP 09 (2015) 095, arXiv:1503.09177 [nucl-ex].
  27. ALICE Collaboration, S. Acharya et al., “Coherent photoproduction of ρ0superscript𝜌0\rho^{0}italic_ρ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT vector mesons in ultra-peripheral Pb-Pb collisions at sNNsubscriptsNN\sqrt{{\mathrm{s}}_{\mathrm{NN}}}square-root start_ARG roman_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, JHEP 06 (2020) 035, arXiv:2002.10897 [nucl-ex].
  28. ALICE Collaboration, S. Acharya et al., “First measurement of coherent ρ𝜌\rhoitalic_ρ0 photoproduction in ultra-peripheral Xe–Xe collisions at sNN=5.44subscript𝑠NN5.44\sqrt{s_{\mathrm{NN}}}=5.44square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.44 TeV”, Phys. Lett. B 820 (2021) 136481, arXiv:2101.02581 [nucl-ex].
  29. CMS Collaboration, A. M. Sirunyan et al., “Observation of Forward Neutron Multiplicity Dependence of Dimuon Acoplanarity in Ultraperipheral Pb-Pb Collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG=5.02  TeV”, Phys. Rev. Lett. 127 (2021) 122001, arXiv:2011.05239 [hep-ex].
  30. ATLAS Collaboration, G. Aad et al., “Exclusive dimuon production in ultraperipheral Pb+Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV with ATLAS”, Phys. Rev. C 104 (2021) 024906, arXiv:2011.12211 [nucl-ex].
  31. ATLAS Collaboration, G. Aad et al., “Exclusive dielectron production in ultraperipheral Pb+Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\textrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV with ATLAS”, JHEP 2306 (2023) 182, arXiv:2207.12781 [nucl-ex].
  32. L. A. Harland-Lang, “Exciting ions: A systematic treatment of ultraperipheral heavy ion collisions with nuclear breakup”, Phys. Rev. D 107 (2023) 093004, arXiv:2303.04826 [hep-ph].
  33. CMS Collaboration, A. Tumasyan et al., “Probing small Bjorken-x𝑥xitalic_x nuclear gluonic structure via coherent J/ψ𝜓\psiitalic_ψ photoproduction in ultraperipheral PbPb collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, arXiv:2303.16984 [nucl-ex].
  34. V. Guzey, E. Kryshen, and M. Zhalov, “Coherent photoproduction of vector mesons in ultraperipheral heavy ion collisions: Update for run 2 at the CERN Large Hadron Collider”, Phys. Rev. C 93 (2016) 055206, arXiv:1602.01456 [nucl-th].
  35. T. Lappi and H. Mantysaari, “J/ψJ𝜓{\rm J}/\psiroman_J / italic_ψ production in ultraperipheral Pb+Pb and p𝑝pitalic_p+Pb collisions at energies available at the CERN Large Hadron Collider”, Phys. Rev. C 87 (2013) 032201, arXiv:1301.4095 [hep-ph].
  36. J. Cepila, J. G. Contreras, and M. Krelina, “Coherent and incoherent J/ψJ𝜓\mathrm{J/}\psiroman_J / italic_ψ photonuclear production in an energy-dependent hot-spot model”, Phys. Rev. C 97 (2018) 024901, arXiv:1711.01855 [hep-ph].
  37. H. Mäntysaari and B. Schenke, “Probing subnucleon scale fluctuations in ultraperipheral heavy ion collisions”, Phys. Lett. B 772 (2017) 832–838, arXiv:1703.09256 [hep-ph].
  38. D. Bendova, J. Cepila, J. G. Contreras, and M. Matas, “Photonuclear J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ production at the LHC: Proton-based versus nuclear dipole scattering amplitudes”, Phys. Lett. B 817 (2021) 136306, arXiv:2006.12980 [hep-ph].
  39. V. P. Gonçalves, D. E. Martins, and C. R. Sena, “Coherent and incoherent J/ψJ𝜓{\rm J}/\psiroman_J / italic_ψ photoproduction in Pb–Pb collisions at the LHC, HE-LHC and FCC”, Eur. Phys. J. A 57 (2021) 82, arXiv:2007.13625 [hep-ph].
  40. K. J. Eskola, C. A. Flett, V. Guzey, T. Löytäinen, and H. Paukkunen, “Exclusive J/ψ𝜓\psiitalic_ψ photoproduction in ultraperipheral Pb+Pb collisions at the CERN Large Hadron Collider calculated at next-to-leading order perturbative QCD”, Phys. Rev. C 106 (2022) 035202, arXiv:2203.11613 [hep-ph].
  41. S. R. Klein and J. Nystrand, “Interference in exclusive vector meson production in heavy ion collisions”, Phys. Rev. Lett. 84 (2000) 2330–2333, arXiv:hep-ph/9909237.
  42. S. R. Klein, J. Nystrand, J. Seger, Y. Gorbunov, and J. Butterworth, “STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions”, Comput. Phys. Commun. 212 (2017) 258–268, arXiv:1607.03838 [hep-ph].
  43. M. Broz, J. G. Contreras, and J. D. Tapia Takaki, “A generator of forward neutrons for ultra-peripheral collisions: n𝐎𝐎superscriptsubscriptabsent𝐎𝐎\mathbf{{}_{O}^{O}}start_FLOATSUBSCRIPT bold_O end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT bold_O end_POSTSUPERSCRIPTn”, Comput. Phys. Commun. (2020) 107181, arXiv:1908.08263 [nucl-th].
  44. A. Veyssiere, H. Beil, R. Bergere, P. Carlos, and A. Lepretre, “Photoneutron cross sections of 208 Pb and 197 Au”, Nucl. Phys. A 159 (1970) 561–576.
  45. N. Bianchi et al., “Total hadronic photoabsorption cross-section on nuclei in the nucleon resonance region”, Phys. Rev. C 54 (1996) 1688–1699.
  46. T. A. Armstrong et al., “Total hadronic cross-section of gamma rays in hydrogen in the energy range 0.265-GeV to 4.215-GeV”, Phys. Rev. D 5 (1972) 1640–1652.
  47. T. A. Armstrong et al., “The total photon deuteron hadronic cross-section in the energy range 0.265-4.215 GeV”, Nucl. Phys. B 41 (1972) 445–473.
  48. G. F. Chew and G. C. Wick, “The Impulse Approximation”, Phys. Rev. 85 (1952) 636.
  49. M. G. Ryskin, “Diffractive J/ψJ𝜓{\rm J}/\psiroman_J / italic_ψ electroproduction in LLA QCD”, Z. Phys. C 57 (1993) 89–92.
  50. T. H. Bauer, R. D. Spital, D. R. Yennie, and F. M. Pipkin, “The Hadronic Properties of the Photon in High-Energy Interactions”, Rev. Mod. Phys. 50 (1978) 261. [Erratum: Rev.Mod.Phys. 51, 407 (1979)].
  51. K. J. Eskola, H. Paukkunen, and C. A. Salgado, “EPS09: A New Generation of NLO and LO Nuclear Parton Distribution Functions”, JHEP 04 (2009) 065, arXiv:0902.4154 [hep-ph].
  52. L. Frankfurt, V. Guzey, and M. Strikman, “Leading Twist Nuclear Shadowing Phenomena in Hard Processes with Nuclei”, Phys. Rept. 512 (2012) 255–393, arXiv:1106.2091 [hep-ph].
  53. D. Bendova, J. Cepila, J. G. Contreras, and M. Matas, “Solution to the Balitsky-Kovchegov equation with the collinearly improved kernel including impact-parameter dependence”, Phys. Rev. D 100 (2019) 054015, arXiv:1907.12123 [hep-ph].
  54. V. N. Gribov, “Glauber corrections and the interaction between high-energy hadrons and nuclei”, Sov. Phys. JETP 29 (1969) 483–487.
  55. J. Cepila, J. Nemchik, M. Krelina, and R. Pasechnik, “Theoretical uncertainties in exclusive electroproduction of S-wave heavy quarkonia”, Eur. Phys. J. C 79 (2019) 495, arXiv:1901.02664 [hep-ph].
  56. M. Krelina, J. Nemchik, R. Pasechnik, and J. Cepila, “Spin rotation effects in diffractive electroproduction of heavy quarkonia”, Eur. Phys. J. C 79 (2019) 154, arXiv:1812.03001 [hep-ph].
  57. M. L. Good and W. D. Walker, “Diffraction disssociation of beam particles”, Phys. Rev. 120 (1960) 1857–1860.
  58. H. I. Miettinen and J. Pumplin, “Diffraction Scattering and the Parton Structure of Hadrons”, Phys. Rev. D 18 (1978) 1696.
  59. S. R. Klein, “Challenges to the Good-Walker paradigm in coherent and incoherent photoproduction”, arXiv:2301.01408 [hep-ph].
  60. H. Mäntysaari, “Review of proton and nuclear shape fluctuations at high energy”, Rept. Prog. Phys. 83 (2020) 082201, arXiv:2001.10705 [hep-ph].
  61. H. Mäntysaari and B. Schenke, “Evidence of strong proton shape fluctuations from incoherent diffraction”, Phys. Rev. Lett. 117 (2016) 052301, arXiv:1603.04349 [hep-ph].
  62. J. Cepila, J. G. Contreras, and J. D. Tapia Takaki, “Energy dependence of dissociative J/ψJ𝜓\mathrm{J/}\psiroman_J / italic_ψ photoproduction as a signature of gluon saturation at the LHC”, Phys. Lett. B766 (2017) 186–191, arXiv:1608.07559 [hep-ph].
  63. ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002.
  64. ALICE Collaboration, B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, Int. J. Mod. Phys. A29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].
  65. ALICE Collaboration, K. Aamodt et al., “Alignment of the ALICE Inner Tracking System with cosmic-ray tracks”, JINST 5 (2010) P03003, arXiv:1001.0502 [physics.ins-det].
  66. J. Alme et al., “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events”, Nucl. Instrum. Meth. A622 (2010) 316–367, arXiv:1001.1950 [physics.ins-det].
  67. ALICE Collaboration, J. Adam et al., “Determination of the event collision time with the ALICE detector at the LHC”, Eur. Phys. J. Plus 132 (2017) 99, arXiv:1610.03055 [physics.ins-det].
  68. A. Akindinov et al., “A topological trigger based on the Time-of-Flight detector for the ALICE experiment”, Nucl. Instrum. Meth. A 602 (2009) 372–376.
  69. G. Puddu et al., “The zero degree calorimeters for the ALICE experiment”, Nucl. Instrum. Meth. Phys. Res. Sect. A 581 (2007) 397–401.
  70. C. Oppedisano et al., “Physics performance of the ALICE zero degree calorimeter”, Nucl. Phys. B Proc. Suppl. 197 (2009) 206–210.
  71. ALICE Collaboration, B. Abelev et al., “Measurement of the Cross Section for Electromagnetic Dissociation with Neutron Emission in Pb-Pb Collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. Lett. 109 (2012) 252302, arXiv:1203.2436 [nucl-ex].
  72. ALICE Collaboration, E. Abbas et al., “Performance of the ALICE VZERO system”, JINST 8 (2013) P10016, arXiv:1306.3130 [nucl-ex].
  73. M. Broz et al., “Performance of ALICE AD modules in the CERN PS test beam”, JINST 16 (2021) P01017, arXiv:2006.14982 [physics.ins-det].
  74. ALICE Collaboration, “ALICE luminosity determination for Pb−--Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, arXiv:2204.10148 [nucl-ex].
  75. CERN Program Library. CERN, Geneva, 1993. https://cds.cern.ch/record/1082634. Long Writeup W5013.
  76. M. Oreglia, A Study of the Reactions ψ′→γ⁢γ⁢ψnormal-→superscript𝜓normal-′𝛾𝛾𝜓\psi^{\prime}\to\gamma\gamma\psiitalic_ψ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT → italic_γ italic_γ italic_ψ. PhD thesis, Stanford University, 1980. https://www.slac.stanford.edu/cgi-bin/getdoc/slac-r-236.pdf. SLAC Report SLAC-R-236, Appendix D.
  77. Particle Data Group Collaboration, R. L. Workman et al., “Review of Particle Physics”, PTEP 2022 (2022) 083C01.
  78. H1 Collaboration, C. Alexa et al., “Elastic and Proton-Dissociative Photoproduction of J/ψJ𝜓{\rm J}/\psiroman_J / italic_ψ Mesons at HERA”, Eur. Phys. J. C 73 (2013) 2466, arXiv:1304.5162 [hep-ex].
  79. ALICE Collaboration, “Neutron emission in ultraperipheral Pb-Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. C 107 (2023) 064902, arXiv:2209.04250 [nucl-ex].
  80. ALICE Collaboration, “First polarisation measurement of coherently photoproduced J/ψ𝜓\psiitalic_ψ in ultra-peripheral Pb−--Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, arXiv:2304.10928 [nucl-ex].
  81. H. Xing, C. Zhang, J. Zhou, and Y.-J. Zhou, “The cos 2ϕitalic-ϕ\phiitalic_ϕ azimuthal asymmetry in ρ0superscript𝜌0\rho^{0}italic_ρ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT meson production in ultraperipheral heavy ion collisions”, JHEP 10 (2020) 064, arXiv:2006.06206 [hep-ph].
  82. STAR Collaboration, M. Abdallah et al., “Tomography of ultrarelativistic nuclei with polarized photon-gluon collisions”, Sci. Adv. 9 (2023) eabq3903, arXiv:2204.01625 [nucl-ex].
  83. I. Pshenichnov, I. Mishustin, J. Bondorf, A. Botvina, and A. Ilinov, “Particle emission following Coulomb excitation in ultrarelativistic heavy ion collisions”, Phys. Rev. C 60 (1999) 044901, arXiv:nucl-th/9901061.
  84. ALICE Collaboration, J. Adam et al., “Differential studies of inclusive J/ψ𝜓\psiitalic_ψ and ψ𝜓\psiitalic_ψ(2S) production at forward rapidity in Pb-Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\mathrm{NN}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, JHEP 05 (2016) 179, arXiv:1506.08804 [nucl-ex].
  85. ALICE Collaboration, S. Acharya et al., “Energy dependence of exclusive J/ψJ𝜓\mathrm{J}/\psiroman_J / italic_ψ photoproduction off protons in ultra-peripheral p–Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{\scriptscriptstyle NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Eur. Phys. J. C 79 (2019) 402, arXiv:1809.03235 [nucl-ex].
  86. ALICE Collaboration, “Exclusive and dissociative J/ψ𝜓\psiitalic_ψ photoproduction, and exclusive dimuon production, in p−--Pb collisions at sNN=8.16subscript𝑠NN8.16\sqrt{s_{\rm NN}}=8.16square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 8.16 TeV”, arXiv:2304.12403 [nucl-ex].
  87. H1 Collaboration, F. D. Aaron et al., “Measurement of the Inclusive e⁢p𝑒𝑝epitalic_e italic_p Scattering Cross Section at Low Q2superscript𝑄2Q^{2}italic_Q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and x𝑥xitalic_x at HERA”, Eur. Phys. J. C 63 (2009) 625–678, arXiv:0904.0929 [hep-ex].
  88. S. Abrahamyan et al., “Measurement of the Neutron Radius of 208208{}^{208}start_FLOATSUPERSCRIPT 208 end_FLOATSUPERSCRIPTPb Through Parity-Violation in Electron Scattering”, Phys. Rev. Lett. 108 (2012) 112502, arXiv:1201.2568 [nucl-ex].
  89. A. J. Baltz, M. J. Rhoades-Brown, and J. Weneser, “Heavy ion partial beam lifetimes due to Coulomb induced processes”, Phys. Rev. E 54 (1996) 4233–4239.
  90. Z. Citron et al., “Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams”, CERN Yellow Rep. Monogr. 7 (2019) 1159–1410, arXiv:1812.06772 [hep-ph].
  91. ALICE Collaboration, “ALICE upgrades during the LHC Long Shutdown 2”, arXiv:2302.01238 [physics.ins-det].

Summary

We haven't generated a summary for this paper yet.