Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IcSDE+ -- An Indicator for Constrained Multi-Objective Optimization (2305.18734v1)

Published 30 May 2023 in cs.NE

Abstract: The effectiveness of Constrained Multi-Objective Evolutionary Algorithms (CMOEAs) depends on their ability to reach the different feasible regions during evolution, by exploiting the information present in infeasible solutions, in addition to optimizing the several conflicting objectives. Over the years, researchers have proposed several CMOEAs to handle CMOPs. However, among the different CMOEAs proposed most of them are either decomposition-based or Pareto-based, with little focus on indicator-based CMOEAs. In literature, most indicator-based CMOEAs employ - a) traditional indicators used to solve unconstrained multi-objective problems to find the indicator values using objectives values and combine them with overall constraint violation to solve Constrained Multi-objective Optimization Problem (CMOP) as a single objective constraint problem, or b) consider each constraint or the overall constraint violation as objective(s) in addition to the actual objectives. In this paper, we propose an effective single-population indicator-based CMOEA referred to as IcSDE+ that can explore the different feasible regions in the search space. IcSDE+ is an (I)ndicator, that is an efficient fusion of constraint violation (c), shift-based density estimation (SDE) and sum of objectives (+). The performance of CMOEA with IcSDE+ is favorably compared against 9 state-of-the-art CMOEAs on 6 different benchmark suites with diverse characteristics

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)

Summary

We haven't generated a summary for this paper yet.