Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training an Ising Machine with Equilibrium Propagation (2305.18321v1)

Published 22 May 2023 in cs.NE, cs.LG, and quant-ph

Abstract: Ising machines, which are hardware implementations of the Ising model of coupled spins, have been influential in the development of unsupervised learning algorithms at the origins of AI. However, their application to AI has been limited due to the complexities in matching supervised training methods with Ising machine physics, even though these methods are essential for achieving high accuracy. In this study, we demonstrate a novel approach to train Ising machines in a supervised way through the Equilibrium Propagation algorithm, achieving comparable results to software-based implementations. We employ the quantum annealing procedure of the D-Wave Ising machine to train a fully-connected neural network on the MNIST dataset. Furthermore, we demonstrate that the machine's connectivity supports convolution operations, enabling the training of a compact convolutional network with minimal spins per neuron. Our findings establish Ising machines as a promising trainable hardware platform for AI, with the potential to enhance machine learning applications.

Citations (18)

Summary

We haven't generated a summary for this paper yet.