Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multinomial Logistic Regression: Asymptotic Normality on Null Covariates in High-Dimensions (2305.17825v1)

Published 28 May 2023 in math.ST, stat.ME, stat.ML, and stat.TH

Abstract: This paper investigates the asymptotic distribution of the maximum-likelihood estimate (MLE) in multinomial logistic models in the high-dimensional regime where dimension and sample size are of the same order. While classical large-sample theory provides asymptotic normality of the MLE under certain conditions, such classical results are expected to fail in high-dimensions as documented for the binary logistic case in the seminal work of Sur and Cand`es [2019]. We address this issue in classification problems with 3 or more classes, by developing asymptotic normality and asymptotic chi-square results for the multinomial logistic MLE (also known as cross-entropy minimizer) on null covariates. Our theory leads to a new methodology to test the significance of a given feature. Extensive simulation studies on synthetic data corroborate these asymptotic results and confirm the validity of proposed p-values for testing the significance of a given feature.

Citations (4)

Summary

We haven't generated a summary for this paper yet.