Emergent Mind

A Closer Look at In-Context Learning under Distribution Shifts

(2305.16704)
Published May 26, 2023 in cs.LG and stat.ML

Abstract

In-context learning, a capability that enables a model to learn from input examples on the fly without necessitating weight updates, is a defining characteristic of large language models. In this work, we follow the setting proposed in (Garg et al., 2022) to better understand the generality and limitations of in-context learning from the lens of the simple yet fundamental task of linear regression. The key question we aim to address is: Are transformers more adept than some natural and simpler architectures at performing in-context learning under varying distribution shifts? To compare transformers, we propose to use a simple architecture based on set-based Multi-Layer Perceptrons (MLPs). We find that both transformers and set-based MLPs exhibit in-context learning under in-distribution evaluations, but transformers more closely emulate the performance of ordinary least squares (OLS). Transformers also display better resilience to mild distribution shifts, where set-based MLPs falter. However, under severe distribution shifts, both models' in-context learning abilities diminish.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a detailed summary of this paper with a premium account.

We ran into a problem analyzing this paper.

Please try again later (sorry!).

Get summaries of trending AI papers delivered straight to your inbox

Unsubscribe anytime.