Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detect Any Shadow: Segment Anything for Video Shadow Detection (2305.16698v2)

Published 26 May 2023 in cs.CV

Abstract: Segment anything model (SAM) has achieved great success in the field of natural image segmentation. Nevertheless, SAM tends to consider shadows as background and therefore does not perform segmentation on them. In this paper, we propose ShadowSAM, a simple yet effective framework for fine-tuning SAM to detect shadows. Besides, by combining it with long short-term attention mechanism, we extend its capability for efficient video shadow detection. Specifically, we first fine-tune SAM on ViSha training dataset by utilizing the bounding boxes obtained from the ground truth shadow mask. Then during the inference stage, we simulate user interaction by providing bounding boxes to detect a specific frame (e.g., the first frame). Subsequently, using the detected shadow mask as a prior, we employ a long short-term network to learn spatial correlations between distant frames and temporal consistency between adjacent frames, thereby achieving precise shadow information propagation across video frames. Extensive experimental results demonstrate the effectiveness of our method, with notable margin over the state-of-the-art approaches in terms of MAE and IoU metrics. Moreover, our method exhibits accelerated inference speed compared to previous video shadow detection approaches, validating the effectiveness and efficiency of our method. The source code is now publicly available at https://github.com/harrytea/Detect-AnyShadow.

Citations (18)

Summary

We haven't generated a summary for this paper yet.