Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost Envy-Free Allocations of Indivisible Goods or Chores with Entitlements (2305.16081v2)

Published 25 May 2023 in cs.GT and cs.DS

Abstract: We here address the problem of fairly allocating indivisible goods or chores to $n$ agents with weights that define their entitlement to the set of indivisible resources. Stemming from well-studied fairness concepts such as envy-freeness up to one good (EF1) and envy-freeness up to any good (EFX) for agents with equal entitlements, we present, in this study, the first set of impossibility results alongside algorithmic guarantees for fairness among agents with unequal entitlements. Within this paper, we expand the concept of envy-freeness up to any good or chore to the weighted context (WEFX and XWEF respectively), demonstrating that these allocations are not guaranteed to exist for two or three agents. Despite these negative results, we develop a WEFX procedure for two agents with integer weights, and furthermore, we devise an approximate WEFX procedure for two agents with normalized weights. We further present a polynomial-time algorithm that guarantees a weighted envy-free allocation up to one chore (1WEF) for any number of agents with additive cost functions. Our work underscores the heightened complexity of the weighted fair division problem when compared to its unweighted counterpart.

Citations (7)

Summary

We haven't generated a summary for this paper yet.