Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strategic Data Sharing between Competitors (2305.16052v3)

Published 25 May 2023 in cs.LG and cs.GT

Abstract: Collaborative learning techniques have significantly advanced in recent years, enabling private model training across multiple organizations. Despite this opportunity, firms face a dilemma when considering data sharing with competitors -- while collaboration can improve a company's machine learning model, it may also benefit competitors and hence reduce profits. In this work, we introduce a general framework for analyzing this data-sharing trade-off. The framework consists of three components, representing the firms' production decisions, the effect of additional data on model quality, and the data-sharing negotiation process, respectively. We then study an instantiation of the framework, based on a conventional market model from economic theory, to identify key factors that affect collaboration incentives. Our findings indicate a profound impact of market conditions on the data-sharing incentives. In particular, we find that reduced competition, in terms of the similarities between the firms' products, and harder learning tasks foster collaboration.

Citations (5)

Summary

We haven't generated a summary for this paper yet.