Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning from demonstrations: An intuitive VR environment for imitation learning of construction robots (2305.14584v1)

Published 23 May 2023 in cs.RO

Abstract: Construction robots are challenging the traditional paradigm of labor intensive and repetitive construction tasks. Present concerns regarding construction robots are focused on their abilities in performing complex tasks consisting of several subtasks and their adaptability to work in unstructured and dynamic construction environments. Imitation learning (IL) has shown advantages in training a robot to imitate expert actions in complex tasks and the policy thereafter generated by reinforcement learning (RL) is more adaptive in comparison with pre-programmed robots. In this paper, we proposed a framework composed of two modules for imitation learning of construction robots. The first module provides an intuitive expert demonstration collection Virtual Reality (VR) platform where a robot will automatically follow the position, rotation, and actions of the expert's hand in real-time, instead of requiring an expert to control the robot via controllers. The second module provides a template for imitation learning using observations and actions recorded in the first module. In the second module, Behavior Cloning (BC) is utilized for pre-training, Generative Adversarial Imitation Learning (GAIL) and Proximal Policy Optimization (PPO) are combined to achieve a trade-off between the strength of imitation vs. exploration. Results show that imitation learning, especially when combined with PPO, could significantly accelerate training in limited training steps and improve policy performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kangkang Duan (2 papers)
  2. Zhengbo Zou (6 papers)

Summary

We haven't generated a summary for this paper yet.