Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Are Large Language Models Robust Coreference Resolvers? (2305.14489v2)

Published 23 May 2023 in cs.CL

Abstract: Recent work on extending coreference resolution across domains and languages relies on annotated data in both the target domain and language. At the same time, pre-trained large LMs have been reported to exhibit strong zero- and few-shot learning abilities across a wide range of NLP tasks. However, prior work mostly studied this ability using artificial sentence-level datasets such as the Winograd Schema Challenge. In this paper, we assess the feasibility of prompt-based coreference resolution by evaluating instruction-tuned LLMs on difficult, linguistically-complex coreference benchmarks (e.g., CoNLL-2012). We show that prompting for coreference can outperform current unsupervised coreference systems, although this approach appears to be reliant on high-quality mention detectors. Further investigations reveal that instruction-tuned LMs generalize surprisingly well across domains, languages, and time periods; yet continued fine-tuning of neural models should still be preferred if small amounts of annotated examples are available.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)