Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Speech Emotion Recognition Through Differentiable Architecture Search (2305.14402v3)

Published 23 May 2023 in cs.SD, cs.LG, and eess.AS

Abstract: Speech Emotion Recognition (SER) is a critical enabler of emotion-aware communication in human-computer interactions. Recent advancements in Deep Learning (DL) have substantially enhanced the performance of SER models through increased model complexity. However, designing optimal DL architectures requires prior experience and experimental evaluations. Encouragingly, Neural Architecture Search (NAS) offers a promising avenue to determine an optimal DL model automatically. In particular, Differentiable Architecture Search (DARTS) is an efficient method of using NAS to search for optimised models. This paper proposes a DARTS-optimised joint CNN and LSTM architecture, to improve SER performance, where the literature informs the selection of CNN and LSTM coupling to offer improved performance. While DARTS has previously been applied to CNN and LSTM combinations, our approach introduces a novel mechanism, particularly in selecting CNN operations using DARTS. In contrast to previous studies, we refrain from imposing constraints on the order of the layers for the CNN within the DARTS cell; instead, we allow DARTS to determine the optimal layer order autonomously. Experimenting with the IEMOCAP and MSP-IMPROV datasets, we demonstrate that our proposed methodology achieves significantly higher SER accuracy than hand-engineering the CNN-LSTM configuration. It also outperforms the best-reported SER results achieved using DARTS on CNN-LSTM.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com