Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Learning to Summarize with Large Language Models as References (2305.14239v3)

Published 23 May 2023 in cs.CL

Abstract: Recent studies have found that summaries generated by LLMs are favored by human annotators over the original reference summaries in commonly used summarization datasets. Therefore, we study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved. To this end, we use LLMs as both oracle summary generators for standard supervised fine-tuning and oracle summary evaluators for efficient contrastive learning that leverages the LLMs' supervision signals. We conduct comprehensive experiments with source news articles and find that (1) summarization models trained under the LLM-as-reference setting achieve significant performance improvement in both LLM and human evaluations; (2) contrastive learning outperforms standard supervised fine-tuning under both low and high resource settings. Our experimental results also enable a meta-analysis of LLMs' summary evaluation capacities under a challenging setting, showing that LLMs are not well-aligned with human evaluators. Particularly, our expert human evaluation reveals remaining nuanced performance gaps between LLMs and our fine-tuned models, which LLMs fail to capture. Thus, we call for further studies into both the potential and challenges of using LLMs in summarization model development.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com