Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Making Language Models Better Tool Learners with Execution Feedback (2305.13068v3)

Published 22 May 2023 in cs.CL, cs.AI, cs.HC, cs.IR, and cs.LG

Abstract: Tools serve as pivotal interfaces that enable humans to understand and reshape the environment. With the advent of foundation models, AI systems can utilize tools to expand their capabilities and interact with the real world. Existing tool learning methodologies, encompassing supervised fine-tuning and prompt engineering approaches, often induce LLMs to utilize tools indiscriminately, as complex tasks often exceed their own competencies. However, introducing tools for simple tasks, which the models themselves can readily resolve, can inadvertently propagate errors rather than enhance performance. This leads to the research question: can we teach LLMs when and how to use tools? To meet this need, we propose Tool leaRning wIth exeCution fEedback (TRICE), a two-stage end-to-end framework that enables the model to continually learn through feedback derived from tool execution, thereby learning when and how to use tools effectively. Experimental results, backed by further analysis, show that TRICE can make the LLM selectively use tools by improving the accuracy of tool usage while enhancing insufficient tool learning and mitigating excessive reliance on tools. Code is available at https://github.com/zjunlp/TRICE.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets