Papers
Topics
Authors
Recent
2000 character limit reached

Quantifying Association Capabilities of Large Language Models and Its Implications on Privacy Leakage (2305.12707v2)

Published 22 May 2023 in cs.CL, cs.AI, and cs.CR

Abstract: The advancement of LLMs brings notable improvements across various applications, while simultaneously raising concerns about potential private data exposure. One notable capability of LLMs is their ability to form associations between different pieces of information, but this raises concerns when it comes to personally identifiable information (PII). This paper delves into the association capabilities of LLMs, aiming to uncover the factors that influence their proficiency in associating information. Our study reveals that as models scale up, their capacity to associate entities/information intensifies, particularly when target pairs demonstrate shorter co-occurrence distances or higher co-occurrence frequencies. However, there is a distinct performance gap when associating commonsense knowledge versus PII, with the latter showing lower accuracy. Despite the proportion of accurately predicted PII being relatively small, LLMs still demonstrate the capability to predict specific instances of email addresses and phone numbers when provided with appropriate prompts. These findings underscore the potential risk to PII confidentiality posed by the evolving capabilities of LLMs, especially as they continue to expand in scale and power.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.