Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A complete answer to the strong density problem in Sobolev spaces with values into compact manifolds (2305.12589v1)

Published 21 May 2023 in math.FA

Abstract: We consider the problem of strong density of smooth maps in the Sobolev space $ W{s,p}(Q{m};\mathcal{N}) $, where $ 0 < s < +\infty $, $ 1 \leq p < +\infty $, $ Q{m} $ is the unit cube in $ \mathbb{R}{m} $, and $ \mathcal{N} $ is a smooth compact connected Riemannian manifold without boundary. Our main result fully answers the strong density problem in the whole range $ 0 < s < +\infty $: the space $ \mathcal{C}{\infty}(\overline{Q}{m};\mathcal{N}) $ is dense in $ W{s,p}(Q{m};\mathcal{N}) $ if and only if $ \pi_{[sp]}(\mathcal{N}) = {0} $. This completes the results of Bethuel ($ s=1 $), Brezis and Mironescu ($ 0 < s < 1 $), and Bousquet, Ponce, and Van Schaftingen ($ s = 2 $, $ 3 $, ...). We also consider the case of more general domains $ \Omega $, in the setting studied by Hang and Lin when $ s = 1 $.

Summary

We haven't generated a summary for this paper yet.